Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)
We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2013-06, Vol.38 (18), p.7715-7724 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7724 |
---|---|
container_issue | 18 |
container_start_page | 7715 |
container_title | International journal of hydrogen energy |
container_volume | 38 |
creator | Chippar, Purushothama Oh, Kyeongmin Kim, Dongmin Hong, Tae-Whan Kim, Whangi Ju, Hyunchul |
description | We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Three-dimensional (3-D) FEM simulations are conducted under various displacement clamping conditions to analyze cell deformation characteristics. Then, a multi-dimensional HT-PEMFC CFD model is applied to the deformed cell geometries to study transport and electrochemical processes during HT-PEMFC operations. Our numerical simulation results reveal that the maximum stresses in the deformed GDLs always occur near the edge of the ribs. The combined effects of GDL compression/intrusion considerably increase spatial non-uniformity in the species and current density distributions, and reduce cell performance.
► We investigated the effects of GDL deformation on HT-PEMFC performance. ► Coupled FEM/CFD methodology is used. ► FEM analysis reveals that maximum stress always occur near the edges of the ribs. ► GDL deformation considerably effects species and current density distributions. |
doi_str_mv | 10.1016/j.ijhydene.2012.07.122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506404387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319912017533</els_id><sourcerecordid>1506404387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-2463e0bfd52f3963a102f17cc0b0b040457d537b72c61fbf4b9a29baa3495bde3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EEkvhLyBfkMohwV-J4xsodClSUXsoZ8txxl2v8rF4EtQ99p_j1RauyIeRPO-8885DyHvOSs54_Wlfxv3u2MMEpWBclEyXXIgXZMMbbQqpGv2SbJisWSG5Ma_JG8Q9Y1wzZTbkqZ3XwwA9HcHv3BS9GyguCRCpm_LvOiyx6OMIE8Z5ys12-zV33HDEiDTMie7iw44uMB4guWVNQA9pXuaJwuPJ8AGy89glNwENKwzUwzAgvby-L-6ufmxb_PiWvApuQHj3XC_Iz-3VfXtd3Nx--95-uSm84mIphKolsC70lQjS1NJxJgLX3rMuP8VUpftK6k4LX_PQBdUZJ0znnFSm6nqQF-Ty7Jvz_VoBFztGPKXJ0eYVLa9YnW1ko7O0Pkt9mhETBHtIcXTpaDmzJ-Z2b_8ytyfmlmmbmefBD887HGaSIZ_tI_6bFlopY5om6z6fdZAP_h0hWfQRJg99TOAX28_xf6v-AEYCnFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506404387</pqid></control><display><type>article</type><title>Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chippar, Purushothama ; Oh, Kyeongmin ; Kim, Dongmin ; Hong, Tae-Whan ; Kim, Whangi ; Ju, Hyunchul</creator><creatorcontrib>Chippar, Purushothama ; Oh, Kyeongmin ; Kim, Dongmin ; Hong, Tae-Whan ; Kim, Whangi ; Ju, Hyunchul</creatorcontrib><description>We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Three-dimensional (3-D) FEM simulations are conducted under various displacement clamping conditions to analyze cell deformation characteristics. Then, a multi-dimensional HT-PEMFC CFD model is applied to the deformed cell geometries to study transport and electrochemical processes during HT-PEMFC operations. Our numerical simulation results reveal that the maximum stresses in the deformed GDLs always occur near the edge of the ribs. The combined effects of GDL compression/intrusion considerably increase spatial non-uniformity in the species and current density distributions, and reduce cell performance.
► We investigated the effects of GDL deformation on HT-PEMFC performance. ► Coupled FEM/CFD methodology is used. ► FEM analysis reveals that maximum stress always occur near the edges of the ribs. ► GDL deformation considerably effects species and current density distributions.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2012.07.122</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Compressing ; Computational fluid dynamics ; Computer simulation ; Deformation ; Energy ; Exact sciences and technology ; Finite element method ; Fuels ; Gas diffusion layer ; GDL compression ; GDL intrusion ; Hydrogen ; Mathematical models ; Polybenzimidazole (PBI) ; Polybenzimidazoles ; Proton exchange membrane fuel cell ; Proton exchange membrane fuel cells ; Three dimensional</subject><ispartof>International journal of hydrogen energy, 2013-06, Vol.38 (18), p.7715-7724</ispartof><rights>2012 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-2463e0bfd52f3963a102f17cc0b0b040457d537b72c61fbf4b9a29baa3495bde3</citedby><cites>FETCH-LOGICAL-c412t-2463e0bfd52f3963a102f17cc0b0b040457d537b72c61fbf4b9a29baa3495bde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319912017533$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27449988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chippar, Purushothama</creatorcontrib><creatorcontrib>Oh, Kyeongmin</creatorcontrib><creatorcontrib>Kim, Dongmin</creatorcontrib><creatorcontrib>Hong, Tae-Whan</creatorcontrib><creatorcontrib>Kim, Whangi</creatorcontrib><creatorcontrib>Ju, Hyunchul</creatorcontrib><title>Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)</title><title>International journal of hydrogen energy</title><description>We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Three-dimensional (3-D) FEM simulations are conducted under various displacement clamping conditions to analyze cell deformation characteristics. Then, a multi-dimensional HT-PEMFC CFD model is applied to the deformed cell geometries to study transport and electrochemical processes during HT-PEMFC operations. Our numerical simulation results reveal that the maximum stresses in the deformed GDLs always occur near the edge of the ribs. The combined effects of GDL compression/intrusion considerably increase spatial non-uniformity in the species and current density distributions, and reduce cell performance.
► We investigated the effects of GDL deformation on HT-PEMFC performance. ► Coupled FEM/CFD methodology is used. ► FEM analysis reveals that maximum stress always occur near the edges of the ribs. ► GDL deformation considerably effects species and current density distributions.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Compressing</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fuels</subject><subject>Gas diffusion layer</subject><subject>GDL compression</subject><subject>GDL intrusion</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>Polybenzimidazole (PBI)</subject><subject>Polybenzimidazoles</subject><subject>Proton exchange membrane fuel cell</subject><subject>Proton exchange membrane fuel cells</subject><subject>Three dimensional</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EEkvhLyBfkMohwV-J4xsodClSUXsoZ8txxl2v8rF4EtQ99p_j1RauyIeRPO-8885DyHvOSs54_Wlfxv3u2MMEpWBclEyXXIgXZMMbbQqpGv2SbJisWSG5Ma_JG8Q9Y1wzZTbkqZ3XwwA9HcHv3BS9GyguCRCpm_LvOiyx6OMIE8Z5ys12-zV33HDEiDTMie7iw44uMB4guWVNQA9pXuaJwuPJ8AGy89glNwENKwzUwzAgvby-L-6ufmxb_PiWvApuQHj3XC_Iz-3VfXtd3Nx--95-uSm84mIphKolsC70lQjS1NJxJgLX3rMuP8VUpftK6k4LX_PQBdUZJ0znnFSm6nqQF-Ty7Jvz_VoBFztGPKXJ0eYVLa9YnW1ko7O0Pkt9mhETBHtIcXTpaDmzJ-Z2b_8ytyfmlmmbmefBD887HGaSIZ_tI_6bFlopY5om6z6fdZAP_h0hWfQRJg99TOAX28_xf6v-AEYCnFU</recordid><startdate>20130618</startdate><enddate>20130618</enddate><creator>Chippar, Purushothama</creator><creator>Oh, Kyeongmin</creator><creator>Kim, Dongmin</creator><creator>Hong, Tae-Whan</creator><creator>Kim, Whangi</creator><creator>Ju, Hyunchul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130618</creationdate><title>Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)</title><author>Chippar, Purushothama ; Oh, Kyeongmin ; Kim, Dongmin ; Hong, Tae-Whan ; Kim, Whangi ; Ju, Hyunchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-2463e0bfd52f3963a102f17cc0b0b040457d537b72c61fbf4b9a29baa3495bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Compressing</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fuels</topic><topic>Gas diffusion layer</topic><topic>GDL compression</topic><topic>GDL intrusion</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>Polybenzimidazole (PBI)</topic><topic>Polybenzimidazoles</topic><topic>Proton exchange membrane fuel cell</topic><topic>Proton exchange membrane fuel cells</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chippar, Purushothama</creatorcontrib><creatorcontrib>Oh, Kyeongmin</creatorcontrib><creatorcontrib>Kim, Dongmin</creatorcontrib><creatorcontrib>Hong, Tae-Whan</creatorcontrib><creatorcontrib>Kim, Whangi</creatorcontrib><creatorcontrib>Ju, Hyunchul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chippar, Purushothama</au><au>Oh, Kyeongmin</au><au>Kim, Dongmin</au><au>Hong, Tae-Whan</au><au>Kim, Whangi</au><au>Ju, Hyunchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2013-06-18</date><risdate>2013</risdate><volume>38</volume><issue>18</issue><spage>7715</spage><epage>7724</epage><pages>7715-7724</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Three-dimensional (3-D) FEM simulations are conducted under various displacement clamping conditions to analyze cell deformation characteristics. Then, a multi-dimensional HT-PEMFC CFD model is applied to the deformed cell geometries to study transport and electrochemical processes during HT-PEMFC operations. Our numerical simulation results reveal that the maximum stresses in the deformed GDLs always occur near the edge of the ribs. The combined effects of GDL compression/intrusion considerably increase spatial non-uniformity in the species and current density distributions, and reduce cell performance.
► We investigated the effects of GDL deformation on HT-PEMFC performance. ► Coupled FEM/CFD methodology is used. ► FEM analysis reveals that maximum stress always occur near the edges of the ribs. ► GDL deformation considerably effects species and current density distributions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2012.07.122</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2013-06, Vol.38 (18), p.7715-7724 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506404387 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Alternative fuels. Production and utilization Applied sciences Compressing Computational fluid dynamics Computer simulation Deformation Energy Exact sciences and technology Finite element method Fuels Gas diffusion layer GDL compression GDL intrusion Hydrogen Mathematical models Polybenzimidazole (PBI) Polybenzimidazoles Proton exchange membrane fuel cell Proton exchange membrane fuel cells Three dimensional |
title | Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20mechanical%20stress%20and%20multi-dimensional%20CFD%20analysis%20for%20high%20temperature%20proton%20exchange%20membrane%20fuel%20cells%20(HT-PEMFCs)&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Chippar,%20Purushothama&rft.date=2013-06-18&rft.volume=38&rft.issue=18&rft.spage=7715&rft.epage=7724&rft.pages=7715-7724&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2012.07.122&rft_dat=%3Cproquest_cross%3E1506404387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506404387&rft_id=info:pmid/&rft_els_id=S0360319912017533&rfr_iscdi=true |