Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)

We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2013-06, Vol.38 (18), p.7715-7724
Hauptverfasser: Chippar, Purushothama, Oh, Kyeongmin, Kim, Dongmin, Hong, Tae-Whan, Kim, Whangi, Ju, Hyunchul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7724
container_issue 18
container_start_page 7715
container_title International journal of hydrogen energy
container_volume 38
creator Chippar, Purushothama
Oh, Kyeongmin
Kim, Dongmin
Hong, Tae-Whan
Kim, Whangi
Ju, Hyunchul
description We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Three-dimensional (3-D) FEM simulations are conducted under various displacement clamping conditions to analyze cell deformation characteristics. Then, a multi-dimensional HT-PEMFC CFD model is applied to the deformed cell geometries to study transport and electrochemical processes during HT-PEMFC operations. Our numerical simulation results reveal that the maximum stresses in the deformed GDLs always occur near the edge of the ribs. The combined effects of GDL compression/intrusion considerably increase spatial non-uniformity in the species and current density distributions, and reduce cell performance. ► We investigated the effects of GDL deformation on HT-PEMFC performance. ► Coupled FEM/CFD methodology is used. ► FEM analysis reveals that maximum stress always occur near the edges of the ribs. ► GDL deformation considerably effects species and current density distributions.
doi_str_mv 10.1016/j.ijhydene.2012.07.122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506404387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319912017533</els_id><sourcerecordid>1506404387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-2463e0bfd52f3963a102f17cc0b0b040457d537b72c61fbf4b9a29baa3495bde3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EEkvhLyBfkMohwV-J4xsodClSUXsoZ8txxl2v8rF4EtQ99p_j1RauyIeRPO-8885DyHvOSs54_Wlfxv3u2MMEpWBclEyXXIgXZMMbbQqpGv2SbJisWSG5Ma_JG8Q9Y1wzZTbkqZ3XwwA9HcHv3BS9GyguCRCpm_LvOiyx6OMIE8Z5ys12-zV33HDEiDTMie7iw44uMB4guWVNQA9pXuaJwuPJ8AGy89glNwENKwzUwzAgvby-L-6ufmxb_PiWvApuQHj3XC_Iz-3VfXtd3Nx--95-uSm84mIphKolsC70lQjS1NJxJgLX3rMuP8VUpftK6k4LX_PQBdUZJ0znnFSm6nqQF-Ty7Jvz_VoBFztGPKXJ0eYVLa9YnW1ko7O0Pkt9mhETBHtIcXTpaDmzJ-Z2b_8ytyfmlmmbmefBD887HGaSIZ_tI_6bFlopY5om6z6fdZAP_h0hWfQRJg99TOAX28_xf6v-AEYCnFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506404387</pqid></control><display><type>article</type><title>Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chippar, Purushothama ; Oh, Kyeongmin ; Kim, Dongmin ; Hong, Tae-Whan ; Kim, Whangi ; Ju, Hyunchul</creator><creatorcontrib>Chippar, Purushothama ; Oh, Kyeongmin ; Kim, Dongmin ; Hong, Tae-Whan ; Kim, Whangi ; Ju, Hyunchul</creatorcontrib><description>We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Three-dimensional (3-D) FEM simulations are conducted under various displacement clamping conditions to analyze cell deformation characteristics. Then, a multi-dimensional HT-PEMFC CFD model is applied to the deformed cell geometries to study transport and electrochemical processes during HT-PEMFC operations. Our numerical simulation results reveal that the maximum stresses in the deformed GDLs always occur near the edge of the ribs. The combined effects of GDL compression/intrusion considerably increase spatial non-uniformity in the species and current density distributions, and reduce cell performance. ► We investigated the effects of GDL deformation on HT-PEMFC performance. ► Coupled FEM/CFD methodology is used. ► FEM analysis reveals that maximum stress always occur near the edges of the ribs. ► GDL deformation considerably effects species and current density distributions.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2012.07.122</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Compressing ; Computational fluid dynamics ; Computer simulation ; Deformation ; Energy ; Exact sciences and technology ; Finite element method ; Fuels ; Gas diffusion layer ; GDL compression ; GDL intrusion ; Hydrogen ; Mathematical models ; Polybenzimidazole (PBI) ; Polybenzimidazoles ; Proton exchange membrane fuel cell ; Proton exchange membrane fuel cells ; Three dimensional</subject><ispartof>International journal of hydrogen energy, 2013-06, Vol.38 (18), p.7715-7724</ispartof><rights>2012 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-2463e0bfd52f3963a102f17cc0b0b040457d537b72c61fbf4b9a29baa3495bde3</citedby><cites>FETCH-LOGICAL-c412t-2463e0bfd52f3963a102f17cc0b0b040457d537b72c61fbf4b9a29baa3495bde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319912017533$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27449988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chippar, Purushothama</creatorcontrib><creatorcontrib>Oh, Kyeongmin</creatorcontrib><creatorcontrib>Kim, Dongmin</creatorcontrib><creatorcontrib>Hong, Tae-Whan</creatorcontrib><creatorcontrib>Kim, Whangi</creatorcontrib><creatorcontrib>Ju, Hyunchul</creatorcontrib><title>Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)</title><title>International journal of hydrogen energy</title><description>We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Three-dimensional (3-D) FEM simulations are conducted under various displacement clamping conditions to analyze cell deformation characteristics. Then, a multi-dimensional HT-PEMFC CFD model is applied to the deformed cell geometries to study transport and electrochemical processes during HT-PEMFC operations. Our numerical simulation results reveal that the maximum stresses in the deformed GDLs always occur near the edge of the ribs. The combined effects of GDL compression/intrusion considerably increase spatial non-uniformity in the species and current density distributions, and reduce cell performance. ► We investigated the effects of GDL deformation on HT-PEMFC performance. ► Coupled FEM/CFD methodology is used. ► FEM analysis reveals that maximum stress always occur near the edges of the ribs. ► GDL deformation considerably effects species and current density distributions.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Compressing</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fuels</subject><subject>Gas diffusion layer</subject><subject>GDL compression</subject><subject>GDL intrusion</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>Polybenzimidazole (PBI)</subject><subject>Polybenzimidazoles</subject><subject>Proton exchange membrane fuel cell</subject><subject>Proton exchange membrane fuel cells</subject><subject>Three dimensional</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EEkvhLyBfkMohwV-J4xsodClSUXsoZ8txxl2v8rF4EtQ99p_j1RauyIeRPO-8885DyHvOSs54_Wlfxv3u2MMEpWBclEyXXIgXZMMbbQqpGv2SbJisWSG5Ma_JG8Q9Y1wzZTbkqZ3XwwA9HcHv3BS9GyguCRCpm_LvOiyx6OMIE8Z5ys12-zV33HDEiDTMie7iw44uMB4guWVNQA9pXuaJwuPJ8AGy89glNwENKwzUwzAgvby-L-6ufmxb_PiWvApuQHj3XC_Iz-3VfXtd3Nx--95-uSm84mIphKolsC70lQjS1NJxJgLX3rMuP8VUpftK6k4LX_PQBdUZJ0znnFSm6nqQF-Ty7Jvz_VoBFztGPKXJ0eYVLa9YnW1ko7O0Pkt9mhETBHtIcXTpaDmzJ-Z2b_8ytyfmlmmbmefBD887HGaSIZ_tI_6bFlopY5om6z6fdZAP_h0hWfQRJg99TOAX28_xf6v-AEYCnFU</recordid><startdate>20130618</startdate><enddate>20130618</enddate><creator>Chippar, Purushothama</creator><creator>Oh, Kyeongmin</creator><creator>Kim, Dongmin</creator><creator>Hong, Tae-Whan</creator><creator>Kim, Whangi</creator><creator>Ju, Hyunchul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130618</creationdate><title>Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)</title><author>Chippar, Purushothama ; Oh, Kyeongmin ; Kim, Dongmin ; Hong, Tae-Whan ; Kim, Whangi ; Ju, Hyunchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-2463e0bfd52f3963a102f17cc0b0b040457d537b72c61fbf4b9a29baa3495bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Compressing</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fuels</topic><topic>Gas diffusion layer</topic><topic>GDL compression</topic><topic>GDL intrusion</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>Polybenzimidazole (PBI)</topic><topic>Polybenzimidazoles</topic><topic>Proton exchange membrane fuel cell</topic><topic>Proton exchange membrane fuel cells</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chippar, Purushothama</creatorcontrib><creatorcontrib>Oh, Kyeongmin</creatorcontrib><creatorcontrib>Kim, Dongmin</creatorcontrib><creatorcontrib>Hong, Tae-Whan</creatorcontrib><creatorcontrib>Kim, Whangi</creatorcontrib><creatorcontrib>Ju, Hyunchul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chippar, Purushothama</au><au>Oh, Kyeongmin</au><au>Kim, Dongmin</au><au>Hong, Tae-Whan</au><au>Kim, Whangi</au><au>Ju, Hyunchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2013-06-18</date><risdate>2013</risdate><volume>38</volume><issue>18</issue><spage>7715</spage><epage>7724</epage><pages>7715-7724</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Three-dimensional (3-D) FEM simulations are conducted under various displacement clamping conditions to analyze cell deformation characteristics. Then, a multi-dimensional HT-PEMFC CFD model is applied to the deformed cell geometries to study transport and electrochemical processes during HT-PEMFC operations. Our numerical simulation results reveal that the maximum stresses in the deformed GDLs always occur near the edge of the ribs. The combined effects of GDL compression/intrusion considerably increase spatial non-uniformity in the species and current density distributions, and reduce cell performance. ► We investigated the effects of GDL deformation on HT-PEMFC performance. ► Coupled FEM/CFD methodology is used. ► FEM analysis reveals that maximum stress always occur near the edges of the ribs. ► GDL deformation considerably effects species and current density distributions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2012.07.122</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2013-06, Vol.38 (18), p.7715-7724
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1506404387
source Elsevier ScienceDirect Journals Complete
subjects Alternative fuels. Production and utilization
Applied sciences
Compressing
Computational fluid dynamics
Computer simulation
Deformation
Energy
Exact sciences and technology
Finite element method
Fuels
Gas diffusion layer
GDL compression
GDL intrusion
Hydrogen
Mathematical models
Polybenzimidazole (PBI)
Polybenzimidazoles
Proton exchange membrane fuel cell
Proton exchange membrane fuel cells
Three dimensional
title Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20mechanical%20stress%20and%20multi-dimensional%20CFD%20analysis%20for%20high%20temperature%20proton%20exchange%20membrane%20fuel%20cells%20(HT-PEMFCs)&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Chippar,%20Purushothama&rft.date=2013-06-18&rft.volume=38&rft.issue=18&rft.spage=7715&rft.epage=7724&rft.pages=7715-7724&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2012.07.122&rft_dat=%3Cproquest_cross%3E1506404387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506404387&rft_id=info:pmid/&rft_els_id=S0360319912017533&rfr_iscdi=true