Bayesian image interpolation using Markov random fields driven by visually relevant image features
In this paper we present a Markov Random Field (MRF) based image interpolation procedure suited to both noise-free and noisy measurements. Specifically, after introducing a MRF characterized by means of a novel complex line process representing the visually relevant image features, we derive the glo...
Gespeichert in:
Veröffentlicht in: | Signal processing. Image communication 2013-09, Vol.28 (8), p.967-983 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 983 |
---|---|
container_issue | 8 |
container_start_page | 967 |
container_title | Signal processing. Image communication |
container_volume | 28 |
creator | Colonnese, S. Rinauro, S. Scarano, G. |
description | In this paper we present a Markov Random Field (MRF) based image interpolation procedure suited to both noise-free and noisy measurements. Specifically, after introducing a MRF characterized by means of a novel complex line process representing the visually relevant image features, we derive the global Maximum A Posteriori (MAP) interpolator under the hypothesis of spatially variant additive Gaussian noise. Besides, we derive a closed form local Bayesian MAP interpolator, on the base of which we develop a suboptimal, computationally efficient, single pass interpolation procedure. Numerical simulations demonstrate that the interpolation procedure outperforms state-of-the-art techniques, from both a subjective and objective point of view, in the case of noise-free and noisy measurements.
► We present a Markov random field based image interpolation procedure. ► Both a global and a local formulation of a MAP interpolation are derived. ► We model the visually relevant image features by a novel complex line process. ► The interpolator deals also with measurements affected by spatially variant noise. |
doi_str_mv | 10.1016/j.image.2012.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506404066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0923596512001154</els_id><sourcerecordid>1448726261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c7ee56f0b00356ad8e966d4b3cbf1c5f8db52d6eea3d049edd85ee69739cfa7f3</originalsourceid><addsrcrecordid>eNqFkLtOxDAURC0EEsvjC2hc0iRc52HHBQUgXhKIBmrLsa9XXrLOYieR9u8Ju9RQTTNnpDOEXDDIGTB-tcr9Wi8xL4AVOYgcgB2QBWuEzAouxCFZgCzKrJa8PiYnKa0AoKhALkh7q7eYvA50t0B9GDBu-k4Pvg90TD4s6auOn_1Eow62X1PnsbOJ2ugnDLTd0smnUXfdlkbscNJh-J1yqIcxYjojR053Cc9_85R8PNy_3z1lL2-Pz3c3L5kpuRwyIxBr7qAFKGuubYOSc1u1pWkdM7VrbFsXliPq0kIl0dqmRuRSlNI4LVx5Si73u5vYf42YBrX2yWDX6YD9mBSrgVdQAef_V6uqEQUvOJur5b5qYp9SRKc2cfaLW8VA_ZyvVmrnq37OVyDUfP5MXe8pnIUnj1El4zEYtD6iGZTt_Z_8N3sCkNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448726261</pqid></control><display><type>article</type><title>Bayesian image interpolation using Markov random fields driven by visually relevant image features</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Colonnese, S. ; Rinauro, S. ; Scarano, G.</creator><creatorcontrib>Colonnese, S. ; Rinauro, S. ; Scarano, G.</creatorcontrib><description>In this paper we present a Markov Random Field (MRF) based image interpolation procedure suited to both noise-free and noisy measurements. Specifically, after introducing a MRF characterized by means of a novel complex line process representing the visually relevant image features, we derive the global Maximum A Posteriori (MAP) interpolator under the hypothesis of spatially variant additive Gaussian noise. Besides, we derive a closed form local Bayesian MAP interpolator, on the base of which we develop a suboptimal, computationally efficient, single pass interpolation procedure. Numerical simulations demonstrate that the interpolation procedure outperforms state-of-the-art techniques, from both a subjective and objective point of view, in the case of noise-free and noisy measurements.
► We present a Markov random field based image interpolation procedure. ► Both a global and a local formulation of a MAP interpolation are derived. ► We model the visually relevant image features by a novel complex line process. ► The interpolator deals also with measurements affected by spatially variant noise.</description><identifier>ISSN: 0923-5965</identifier><identifier>EISSN: 1879-2677</identifier><identifier>DOI: 10.1016/j.image.2012.07.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bayesian analysis ; Bayesian estimation ; Computational efficiency ; Gaussian ; Image interpolation ; Interpolation ; Magnetorheological fluids ; Markov processes ; Markov random fields ; Mathematical analysis</subject><ispartof>Signal processing. Image communication, 2013-09, Vol.28 (8), p.967-983</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c7ee56f0b00356ad8e966d4b3cbf1c5f8db52d6eea3d049edd85ee69739cfa7f3</citedby><cites>FETCH-LOGICAL-c369t-c7ee56f0b00356ad8e966d4b3cbf1c5f8db52d6eea3d049edd85ee69739cfa7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.image.2012.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Colonnese, S.</creatorcontrib><creatorcontrib>Rinauro, S.</creatorcontrib><creatorcontrib>Scarano, G.</creatorcontrib><title>Bayesian image interpolation using Markov random fields driven by visually relevant image features</title><title>Signal processing. Image communication</title><description>In this paper we present a Markov Random Field (MRF) based image interpolation procedure suited to both noise-free and noisy measurements. Specifically, after introducing a MRF characterized by means of a novel complex line process representing the visually relevant image features, we derive the global Maximum A Posteriori (MAP) interpolator under the hypothesis of spatially variant additive Gaussian noise. Besides, we derive a closed form local Bayesian MAP interpolator, on the base of which we develop a suboptimal, computationally efficient, single pass interpolation procedure. Numerical simulations demonstrate that the interpolation procedure outperforms state-of-the-art techniques, from both a subjective and objective point of view, in the case of noise-free and noisy measurements.
► We present a Markov random field based image interpolation procedure. ► Both a global and a local formulation of a MAP interpolation are derived. ► We model the visually relevant image features by a novel complex line process. ► The interpolator deals also with measurements affected by spatially variant noise.</description><subject>Bayesian analysis</subject><subject>Bayesian estimation</subject><subject>Computational efficiency</subject><subject>Gaussian</subject><subject>Image interpolation</subject><subject>Interpolation</subject><subject>Magnetorheological fluids</subject><subject>Markov processes</subject><subject>Markov random fields</subject><subject>Mathematical analysis</subject><issn>0923-5965</issn><issn>1879-2677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOxDAURC0EEsvjC2hc0iRc52HHBQUgXhKIBmrLsa9XXrLOYieR9u8Ju9RQTTNnpDOEXDDIGTB-tcr9Wi8xL4AVOYgcgB2QBWuEzAouxCFZgCzKrJa8PiYnKa0AoKhALkh7q7eYvA50t0B9GDBu-k4Pvg90TD4s6auOn_1Eow62X1PnsbOJ2ugnDLTd0smnUXfdlkbscNJh-J1yqIcxYjojR053Cc9_85R8PNy_3z1lL2-Pz3c3L5kpuRwyIxBr7qAFKGuubYOSc1u1pWkdM7VrbFsXliPq0kIl0dqmRuRSlNI4LVx5Si73u5vYf42YBrX2yWDX6YD9mBSrgVdQAef_V6uqEQUvOJur5b5qYp9SRKc2cfaLW8VA_ZyvVmrnq37OVyDUfP5MXe8pnIUnj1El4zEYtD6iGZTt_Z_8N3sCkNI</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Colonnese, S.</creator><creator>Rinauro, S.</creator><creator>Scarano, G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201309</creationdate><title>Bayesian image interpolation using Markov random fields driven by visually relevant image features</title><author>Colonnese, S. ; Rinauro, S. ; Scarano, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c7ee56f0b00356ad8e966d4b3cbf1c5f8db52d6eea3d049edd85ee69739cfa7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayesian analysis</topic><topic>Bayesian estimation</topic><topic>Computational efficiency</topic><topic>Gaussian</topic><topic>Image interpolation</topic><topic>Interpolation</topic><topic>Magnetorheological fluids</topic><topic>Markov processes</topic><topic>Markov random fields</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colonnese, S.</creatorcontrib><creatorcontrib>Rinauro, S.</creatorcontrib><creatorcontrib>Scarano, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing. Image communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colonnese, S.</au><au>Rinauro, S.</au><au>Scarano, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian image interpolation using Markov random fields driven by visually relevant image features</atitle><jtitle>Signal processing. Image communication</jtitle><date>2013-09</date><risdate>2013</risdate><volume>28</volume><issue>8</issue><spage>967</spage><epage>983</epage><pages>967-983</pages><issn>0923-5965</issn><eissn>1879-2677</eissn><abstract>In this paper we present a Markov Random Field (MRF) based image interpolation procedure suited to both noise-free and noisy measurements. Specifically, after introducing a MRF characterized by means of a novel complex line process representing the visually relevant image features, we derive the global Maximum A Posteriori (MAP) interpolator under the hypothesis of spatially variant additive Gaussian noise. Besides, we derive a closed form local Bayesian MAP interpolator, on the base of which we develop a suboptimal, computationally efficient, single pass interpolation procedure. Numerical simulations demonstrate that the interpolation procedure outperforms state-of-the-art techniques, from both a subjective and objective point of view, in the case of noise-free and noisy measurements.
► We present a Markov random field based image interpolation procedure. ► Both a global and a local formulation of a MAP interpolation are derived. ► We model the visually relevant image features by a novel complex line process. ► The interpolator deals also with measurements affected by spatially variant noise.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.image.2012.07.001</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-5965 |
ispartof | Signal processing. Image communication, 2013-09, Vol.28 (8), p.967-983 |
issn | 0923-5965 1879-2677 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506404066 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bayesian analysis Bayesian estimation Computational efficiency Gaussian Image interpolation Interpolation Magnetorheological fluids Markov processes Markov random fields Mathematical analysis |
title | Bayesian image interpolation using Markov random fields driven by visually relevant image features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20image%20interpolation%20using%20Markov%20random%20fields%20driven%20by%20visually%20relevant%20image%20features&rft.jtitle=Signal%20processing.%20Image%20communication&rft.au=Colonnese,%20S.&rft.date=2013-09&rft.volume=28&rft.issue=8&rft.spage=967&rft.epage=983&rft.pages=967-983&rft.issn=0923-5965&rft.eissn=1879-2677&rft_id=info:doi/10.1016/j.image.2012.07.001&rft_dat=%3Cproquest_cross%3E1448726261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448726261&rft_id=info:pmid/&rft_els_id=S0923596512001154&rfr_iscdi=true |