Bayesian image interpolation using Markov random fields driven by visually relevant image features

In this paper we present a Markov Random Field (MRF) based image interpolation procedure suited to both noise-free and noisy measurements. Specifically, after introducing a MRF characterized by means of a novel complex line process representing the visually relevant image features, we derive the glo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing. Image communication 2013-09, Vol.28 (8), p.967-983
Hauptverfasser: Colonnese, S., Rinauro, S., Scarano, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 983
container_issue 8
container_start_page 967
container_title Signal processing. Image communication
container_volume 28
creator Colonnese, S.
Rinauro, S.
Scarano, G.
description In this paper we present a Markov Random Field (MRF) based image interpolation procedure suited to both noise-free and noisy measurements. Specifically, after introducing a MRF characterized by means of a novel complex line process representing the visually relevant image features, we derive the global Maximum A Posteriori (MAP) interpolator under the hypothesis of spatially variant additive Gaussian noise. Besides, we derive a closed form local Bayesian MAP interpolator, on the base of which we develop a suboptimal, computationally efficient, single pass interpolation procedure. Numerical simulations demonstrate that the interpolation procedure outperforms state-of-the-art techniques, from both a subjective and objective point of view, in the case of noise-free and noisy measurements. ► We present a Markov random field based image interpolation procedure. ► Both a global and a local formulation of a MAP interpolation are derived. ► We model the visually relevant image features by a novel complex line process. ► The interpolator deals also with measurements affected by spatially variant noise.
doi_str_mv 10.1016/j.image.2012.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506404066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0923596512001154</els_id><sourcerecordid>1448726261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c7ee56f0b00356ad8e966d4b3cbf1c5f8db52d6eea3d049edd85ee69739cfa7f3</originalsourceid><addsrcrecordid>eNqFkLtOxDAURC0EEsvjC2hc0iRc52HHBQUgXhKIBmrLsa9XXrLOYieR9u8Ju9RQTTNnpDOEXDDIGTB-tcr9Wi8xL4AVOYgcgB2QBWuEzAouxCFZgCzKrJa8PiYnKa0AoKhALkh7q7eYvA50t0B9GDBu-k4Pvg90TD4s6auOn_1Eow62X1PnsbOJ2ugnDLTd0smnUXfdlkbscNJh-J1yqIcxYjojR053Cc9_85R8PNy_3z1lL2-Pz3c3L5kpuRwyIxBr7qAFKGuubYOSc1u1pWkdM7VrbFsXliPq0kIl0dqmRuRSlNI4LVx5Si73u5vYf42YBrX2yWDX6YD9mBSrgVdQAef_V6uqEQUvOJur5b5qYp9SRKc2cfaLW8VA_ZyvVmrnq37OVyDUfP5MXe8pnIUnj1El4zEYtD6iGZTt_Z_8N3sCkNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448726261</pqid></control><display><type>article</type><title>Bayesian image interpolation using Markov random fields driven by visually relevant image features</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Colonnese, S. ; Rinauro, S. ; Scarano, G.</creator><creatorcontrib>Colonnese, S. ; Rinauro, S. ; Scarano, G.</creatorcontrib><description>In this paper we present a Markov Random Field (MRF) based image interpolation procedure suited to both noise-free and noisy measurements. Specifically, after introducing a MRF characterized by means of a novel complex line process representing the visually relevant image features, we derive the global Maximum A Posteriori (MAP) interpolator under the hypothesis of spatially variant additive Gaussian noise. Besides, we derive a closed form local Bayesian MAP interpolator, on the base of which we develop a suboptimal, computationally efficient, single pass interpolation procedure. Numerical simulations demonstrate that the interpolation procedure outperforms state-of-the-art techniques, from both a subjective and objective point of view, in the case of noise-free and noisy measurements. ► We present a Markov random field based image interpolation procedure. ► Both a global and a local formulation of a MAP interpolation are derived. ► We model the visually relevant image features by a novel complex line process. ► The interpolator deals also with measurements affected by spatially variant noise.</description><identifier>ISSN: 0923-5965</identifier><identifier>EISSN: 1879-2677</identifier><identifier>DOI: 10.1016/j.image.2012.07.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bayesian analysis ; Bayesian estimation ; Computational efficiency ; Gaussian ; Image interpolation ; Interpolation ; Magnetorheological fluids ; Markov processes ; Markov random fields ; Mathematical analysis</subject><ispartof>Signal processing. Image communication, 2013-09, Vol.28 (8), p.967-983</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c7ee56f0b00356ad8e966d4b3cbf1c5f8db52d6eea3d049edd85ee69739cfa7f3</citedby><cites>FETCH-LOGICAL-c369t-c7ee56f0b00356ad8e966d4b3cbf1c5f8db52d6eea3d049edd85ee69739cfa7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.image.2012.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Colonnese, S.</creatorcontrib><creatorcontrib>Rinauro, S.</creatorcontrib><creatorcontrib>Scarano, G.</creatorcontrib><title>Bayesian image interpolation using Markov random fields driven by visually relevant image features</title><title>Signal processing. Image communication</title><description>In this paper we present a Markov Random Field (MRF) based image interpolation procedure suited to both noise-free and noisy measurements. Specifically, after introducing a MRF characterized by means of a novel complex line process representing the visually relevant image features, we derive the global Maximum A Posteriori (MAP) interpolator under the hypothesis of spatially variant additive Gaussian noise. Besides, we derive a closed form local Bayesian MAP interpolator, on the base of which we develop a suboptimal, computationally efficient, single pass interpolation procedure. Numerical simulations demonstrate that the interpolation procedure outperforms state-of-the-art techniques, from both a subjective and objective point of view, in the case of noise-free and noisy measurements. ► We present a Markov random field based image interpolation procedure. ► Both a global and a local formulation of a MAP interpolation are derived. ► We model the visually relevant image features by a novel complex line process. ► The interpolator deals also with measurements affected by spatially variant noise.</description><subject>Bayesian analysis</subject><subject>Bayesian estimation</subject><subject>Computational efficiency</subject><subject>Gaussian</subject><subject>Image interpolation</subject><subject>Interpolation</subject><subject>Magnetorheological fluids</subject><subject>Markov processes</subject><subject>Markov random fields</subject><subject>Mathematical analysis</subject><issn>0923-5965</issn><issn>1879-2677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOxDAURC0EEsvjC2hc0iRc52HHBQUgXhKIBmrLsa9XXrLOYieR9u8Ju9RQTTNnpDOEXDDIGTB-tcr9Wi8xL4AVOYgcgB2QBWuEzAouxCFZgCzKrJa8PiYnKa0AoKhALkh7q7eYvA50t0B9GDBu-k4Pvg90TD4s6auOn_1Eow62X1PnsbOJ2ugnDLTd0smnUXfdlkbscNJh-J1yqIcxYjojR053Cc9_85R8PNy_3z1lL2-Pz3c3L5kpuRwyIxBr7qAFKGuubYOSc1u1pWkdM7VrbFsXliPq0kIl0dqmRuRSlNI4LVx5Si73u5vYf42YBrX2yWDX6YD9mBSrgVdQAef_V6uqEQUvOJur5b5qYp9SRKc2cfaLW8VA_ZyvVmrnq37OVyDUfP5MXe8pnIUnj1El4zEYtD6iGZTt_Z_8N3sCkNI</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Colonnese, S.</creator><creator>Rinauro, S.</creator><creator>Scarano, G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201309</creationdate><title>Bayesian image interpolation using Markov random fields driven by visually relevant image features</title><author>Colonnese, S. ; Rinauro, S. ; Scarano, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c7ee56f0b00356ad8e966d4b3cbf1c5f8db52d6eea3d049edd85ee69739cfa7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayesian analysis</topic><topic>Bayesian estimation</topic><topic>Computational efficiency</topic><topic>Gaussian</topic><topic>Image interpolation</topic><topic>Interpolation</topic><topic>Magnetorheological fluids</topic><topic>Markov processes</topic><topic>Markov random fields</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colonnese, S.</creatorcontrib><creatorcontrib>Rinauro, S.</creatorcontrib><creatorcontrib>Scarano, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing. Image communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colonnese, S.</au><au>Rinauro, S.</au><au>Scarano, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian image interpolation using Markov random fields driven by visually relevant image features</atitle><jtitle>Signal processing. Image communication</jtitle><date>2013-09</date><risdate>2013</risdate><volume>28</volume><issue>8</issue><spage>967</spage><epage>983</epage><pages>967-983</pages><issn>0923-5965</issn><eissn>1879-2677</eissn><abstract>In this paper we present a Markov Random Field (MRF) based image interpolation procedure suited to both noise-free and noisy measurements. Specifically, after introducing a MRF characterized by means of a novel complex line process representing the visually relevant image features, we derive the global Maximum A Posteriori (MAP) interpolator under the hypothesis of spatially variant additive Gaussian noise. Besides, we derive a closed form local Bayesian MAP interpolator, on the base of which we develop a suboptimal, computationally efficient, single pass interpolation procedure. Numerical simulations demonstrate that the interpolation procedure outperforms state-of-the-art techniques, from both a subjective and objective point of view, in the case of noise-free and noisy measurements. ► We present a Markov random field based image interpolation procedure. ► Both a global and a local formulation of a MAP interpolation are derived. ► We model the visually relevant image features by a novel complex line process. ► The interpolator deals also with measurements affected by spatially variant noise.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.image.2012.07.001</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-5965
ispartof Signal processing. Image communication, 2013-09, Vol.28 (8), p.967-983
issn 0923-5965
1879-2677
language eng
recordid cdi_proquest_miscellaneous_1506404066
source Elsevier ScienceDirect Journals Complete
subjects Bayesian analysis
Bayesian estimation
Computational efficiency
Gaussian
Image interpolation
Interpolation
Magnetorheological fluids
Markov processes
Markov random fields
Mathematical analysis
title Bayesian image interpolation using Markov random fields driven by visually relevant image features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20image%20interpolation%20using%20Markov%20random%20fields%20driven%20by%20visually%20relevant%20image%20features&rft.jtitle=Signal%20processing.%20Image%20communication&rft.au=Colonnese,%20S.&rft.date=2013-09&rft.volume=28&rft.issue=8&rft.spage=967&rft.epage=983&rft.pages=967-983&rft.issn=0923-5965&rft.eissn=1879-2677&rft_id=info:doi/10.1016/j.image.2012.07.001&rft_dat=%3Cproquest_cross%3E1448726261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448726261&rft_id=info:pmid/&rft_els_id=S0923596512001154&rfr_iscdi=true