Application of penalty methods to non-stationary variational inequalities

We solve a general variational inequality problem in a finite-dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We suggest to utilize a sequence of solutions of auxiliary problems based on a penalty method. Its convergence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2013-11, Vol.92, p.177-182
1. Verfasser: Konnov, Igor V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue
container_start_page 177
container_title Nonlinear analysis
container_volume 92
creator Konnov, Igor V.
description We solve a general variational inequality problem in a finite-dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We suggest to utilize a sequence of solutions of auxiliary problems based on a penalty method. Its convergence is attained without concordance of penalty and approximation parameters under mild coercivity type conditions. We also show that the regularized version of the penalty method enables us to further weaken the coercivity condition.
doi_str_mv 10.1016/j.na.2013.07.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506402532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X13002319</els_id><sourcerecordid>1464556597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b90b40e56834e77b377a8c84ee133b150c7d0d89db50565d775d7d16e6d28c9a3</originalsourceid><addsrcrecordid>eNqFkL1rwzAQxUVpoWnavaPHLnZPliXZ3ULoFwS6tNBNyNKFKjiSYymB_Pd16q6lw3Ec_N473iPklkJBgYr7TeF1UQJlBcgCKD8jM1pLlvOS8nMyAybKnFfi85JcxbgBACqZmJHXRd93zujkgs_COuvR6y4dsy2mr2BjlkLmg89j-iH0cMwOenDT0WXO426vO5ccxmtysdZdxJvfPScfT4_vy5d89fb8ulyscsMEpLxtoK0AuahZhVK2TEpdm7pCpIy1lIORFmzd2JYDF9xKOY6lAoUta9NoNid3k28_hN0eY1JbFw12nfYY9lGNFqKCkrPyf7QSFR-fNHJEYULNEGIccK36wW3HvIqCOhWsNsprdSpYgVRjwaPkYZLgmPbgcFDROPQGrRvQJGWD-1v8DUGtgoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464556597</pqid></control><display><type>article</type><title>Application of penalty methods to non-stationary variational inequalities</title><source>Access via ScienceDirect (Elsevier)</source><creator>Konnov, Igor V.</creator><creatorcontrib>Konnov, Igor V.</creatorcontrib><description>We solve a general variational inequality problem in a finite-dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We suggest to utilize a sequence of solutions of auxiliary problems based on a penalty method. Its convergence is attained without concordance of penalty and approximation parameters under mild coercivity type conditions. We also show that the regularized version of the penalty method enables us to further weaken the coercivity condition.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2013.07.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Approximation sequence ; Coercive force ; Coercivity ; Coercivity conditions ; Convergence ; Inequalities ; Mapping ; Mathematical analysis ; Non-monotone mappings ; Non-stationarity ; Nonlinearity ; Penalty method ; Regularization ; Variational inequality</subject><ispartof>Nonlinear analysis, 2013-11, Vol.92, p.177-182</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b90b40e56834e77b377a8c84ee133b150c7d0d89db50565d775d7d16e6d28c9a3</citedby><cites>FETCH-LOGICAL-c360t-b90b40e56834e77b377a8c84ee133b150c7d0d89db50565d775d7d16e6d28c9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2013.07.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Konnov, Igor V.</creatorcontrib><title>Application of penalty methods to non-stationary variational inequalities</title><title>Nonlinear analysis</title><description>We solve a general variational inequality problem in a finite-dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We suggest to utilize a sequence of solutions of auxiliary problems based on a penalty method. Its convergence is attained without concordance of penalty and approximation parameters under mild coercivity type conditions. We also show that the regularized version of the penalty method enables us to further weaken the coercivity condition.</description><subject>Approximation</subject><subject>Approximation sequence</subject><subject>Coercive force</subject><subject>Coercivity</subject><subject>Coercivity conditions</subject><subject>Convergence</subject><subject>Inequalities</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Non-monotone mappings</subject><subject>Non-stationarity</subject><subject>Nonlinearity</subject><subject>Penalty method</subject><subject>Regularization</subject><subject>Variational inequality</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkL1rwzAQxUVpoWnavaPHLnZPliXZ3ULoFwS6tNBNyNKFKjiSYymB_Pd16q6lw3Ec_N473iPklkJBgYr7TeF1UQJlBcgCKD8jM1pLlvOS8nMyAybKnFfi85JcxbgBACqZmJHXRd93zujkgs_COuvR6y4dsy2mr2BjlkLmg89j-iH0cMwOenDT0WXO426vO5ccxmtysdZdxJvfPScfT4_vy5d89fb8ulyscsMEpLxtoK0AuahZhVK2TEpdm7pCpIy1lIORFmzd2JYDF9xKOY6lAoUta9NoNid3k28_hN0eY1JbFw12nfYY9lGNFqKCkrPyf7QSFR-fNHJEYULNEGIccK36wW3HvIqCOhWsNsprdSpYgVRjwaPkYZLgmPbgcFDROPQGrRvQJGWD-1v8DUGtgoI</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Konnov, Igor V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>Application of penalty methods to non-stationary variational inequalities</title><author>Konnov, Igor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b90b40e56834e77b377a8c84ee133b150c7d0d89db50565d775d7d16e6d28c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Approximation sequence</topic><topic>Coercive force</topic><topic>Coercivity</topic><topic>Coercivity conditions</topic><topic>Convergence</topic><topic>Inequalities</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Non-monotone mappings</topic><topic>Non-stationarity</topic><topic>Nonlinearity</topic><topic>Penalty method</topic><topic>Regularization</topic><topic>Variational inequality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konnov, Igor V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konnov, Igor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of penalty methods to non-stationary variational inequalities</atitle><jtitle>Nonlinear analysis</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>92</volume><spage>177</spage><epage>182</epage><pages>177-182</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We solve a general variational inequality problem in a finite-dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We suggest to utilize a sequence of solutions of auxiliary problems based on a penalty method. Its convergence is attained without concordance of penalty and approximation parameters under mild coercivity type conditions. We also show that the regularized version of the penalty method enables us to further weaken the coercivity condition.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2013.07.015</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2013-11, Vol.92, p.177-182
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1506402532
source Access via ScienceDirect (Elsevier)
subjects Approximation
Approximation sequence
Coercive force
Coercivity
Coercivity conditions
Convergence
Inequalities
Mapping
Mathematical analysis
Non-monotone mappings
Non-stationarity
Nonlinearity
Penalty method
Regularization
Variational inequality
title Application of penalty methods to non-stationary variational inequalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T06%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20penalty%20methods%20to%20non-stationary%20variational%20inequalities&rft.jtitle=Nonlinear%20analysis&rft.au=Konnov,%20Igor%20V.&rft.date=2013-11-01&rft.volume=92&rft.spage=177&rft.epage=182&rft.pages=177-182&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2013.07.015&rft_dat=%3Cproquest_cross%3E1464556597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464556597&rft_id=info:pmid/&rft_els_id=S0362546X13002319&rfr_iscdi=true