Application of penalty methods to non-stationary variational inequalities
We solve a general variational inequality problem in a finite-dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We suggest to utilize a sequence of solutions of auxiliary problems based on a penalty method. Its convergence...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2013-11, Vol.92, p.177-182 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | |
container_start_page | 177 |
container_title | Nonlinear analysis |
container_volume | 92 |
creator | Konnov, Igor V. |
description | We solve a general variational inequality problem in a finite-dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We suggest to utilize a sequence of solutions of auxiliary problems based on a penalty method. Its convergence is attained without concordance of penalty and approximation parameters under mild coercivity type conditions. We also show that the regularized version of the penalty method enables us to further weaken the coercivity condition. |
doi_str_mv | 10.1016/j.na.2013.07.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506402532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X13002319</els_id><sourcerecordid>1464556597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b90b40e56834e77b377a8c84ee133b150c7d0d89db50565d775d7d16e6d28c9a3</originalsourceid><addsrcrecordid>eNqFkL1rwzAQxUVpoWnavaPHLnZPliXZ3ULoFwS6tNBNyNKFKjiSYymB_Pd16q6lw3Ec_N473iPklkJBgYr7TeF1UQJlBcgCKD8jM1pLlvOS8nMyAybKnFfi85JcxbgBACqZmJHXRd93zujkgs_COuvR6y4dsy2mr2BjlkLmg89j-iH0cMwOenDT0WXO426vO5ccxmtysdZdxJvfPScfT4_vy5d89fb8ulyscsMEpLxtoK0AuahZhVK2TEpdm7pCpIy1lIORFmzd2JYDF9xKOY6lAoUta9NoNid3k28_hN0eY1JbFw12nfYY9lGNFqKCkrPyf7QSFR-fNHJEYULNEGIccK36wW3HvIqCOhWsNsprdSpYgVRjwaPkYZLgmPbgcFDROPQGrRvQJGWD-1v8DUGtgoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464556597</pqid></control><display><type>article</type><title>Application of penalty methods to non-stationary variational inequalities</title><source>Access via ScienceDirect (Elsevier)</source><creator>Konnov, Igor V.</creator><creatorcontrib>Konnov, Igor V.</creatorcontrib><description>We solve a general variational inequality problem in a finite-dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We suggest to utilize a sequence of solutions of auxiliary problems based on a penalty method. Its convergence is attained without concordance of penalty and approximation parameters under mild coercivity type conditions. We also show that the regularized version of the penalty method enables us to further weaken the coercivity condition.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2013.07.015</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Approximation sequence ; Coercive force ; Coercivity ; Coercivity conditions ; Convergence ; Inequalities ; Mapping ; Mathematical analysis ; Non-monotone mappings ; Non-stationarity ; Nonlinearity ; Penalty method ; Regularization ; Variational inequality</subject><ispartof>Nonlinear analysis, 2013-11, Vol.92, p.177-182</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b90b40e56834e77b377a8c84ee133b150c7d0d89db50565d775d7d16e6d28c9a3</citedby><cites>FETCH-LOGICAL-c360t-b90b40e56834e77b377a8c84ee133b150c7d0d89db50565d775d7d16e6d28c9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2013.07.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Konnov, Igor V.</creatorcontrib><title>Application of penalty methods to non-stationary variational inequalities</title><title>Nonlinear analysis</title><description>We solve a general variational inequality problem in a finite-dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We suggest to utilize a sequence of solutions of auxiliary problems based on a penalty method. Its convergence is attained without concordance of penalty and approximation parameters under mild coercivity type conditions. We also show that the regularized version of the penalty method enables us to further weaken the coercivity condition.</description><subject>Approximation</subject><subject>Approximation sequence</subject><subject>Coercive force</subject><subject>Coercivity</subject><subject>Coercivity conditions</subject><subject>Convergence</subject><subject>Inequalities</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Non-monotone mappings</subject><subject>Non-stationarity</subject><subject>Nonlinearity</subject><subject>Penalty method</subject><subject>Regularization</subject><subject>Variational inequality</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkL1rwzAQxUVpoWnavaPHLnZPliXZ3ULoFwS6tNBNyNKFKjiSYymB_Pd16q6lw3Ec_N473iPklkJBgYr7TeF1UQJlBcgCKD8jM1pLlvOS8nMyAybKnFfi85JcxbgBACqZmJHXRd93zujkgs_COuvR6y4dsy2mr2BjlkLmg89j-iH0cMwOenDT0WXO426vO5ccxmtysdZdxJvfPScfT4_vy5d89fb8ulyscsMEpLxtoK0AuahZhVK2TEpdm7pCpIy1lIORFmzd2JYDF9xKOY6lAoUta9NoNid3k28_hN0eY1JbFw12nfYY9lGNFqKCkrPyf7QSFR-fNHJEYULNEGIccK36wW3HvIqCOhWsNsprdSpYgVRjwaPkYZLgmPbgcFDROPQGrRvQJGWD-1v8DUGtgoI</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Konnov, Igor V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>Application of penalty methods to non-stationary variational inequalities</title><author>Konnov, Igor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b90b40e56834e77b377a8c84ee133b150c7d0d89db50565d775d7d16e6d28c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Approximation sequence</topic><topic>Coercive force</topic><topic>Coercivity</topic><topic>Coercivity conditions</topic><topic>Convergence</topic><topic>Inequalities</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Non-monotone mappings</topic><topic>Non-stationarity</topic><topic>Nonlinearity</topic><topic>Penalty method</topic><topic>Regularization</topic><topic>Variational inequality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konnov, Igor V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konnov, Igor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of penalty methods to non-stationary variational inequalities</atitle><jtitle>Nonlinear analysis</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>92</volume><spage>177</spage><epage>182</epage><pages>177-182</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We solve a general variational inequality problem in a finite-dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We suggest to utilize a sequence of solutions of auxiliary problems based on a penalty method. Its convergence is attained without concordance of penalty and approximation parameters under mild coercivity type conditions. We also show that the regularized version of the penalty method enables us to further weaken the coercivity condition.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2013.07.015</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2013-11, Vol.92, p.177-182 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506402532 |
source | Access via ScienceDirect (Elsevier) |
subjects | Approximation Approximation sequence Coercive force Coercivity Coercivity conditions Convergence Inequalities Mapping Mathematical analysis Non-monotone mappings Non-stationarity Nonlinearity Penalty method Regularization Variational inequality |
title | Application of penalty methods to non-stationary variational inequalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T06%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20penalty%20methods%20to%20non-stationary%20variational%20inequalities&rft.jtitle=Nonlinear%20analysis&rft.au=Konnov,%20Igor%20V.&rft.date=2013-11-01&rft.volume=92&rft.spage=177&rft.epage=182&rft.pages=177-182&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2013.07.015&rft_dat=%3Cproquest_cross%3E1464556597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464556597&rft_id=info:pmid/&rft_els_id=S0362546X13002319&rfr_iscdi=true |