Methane steam reforming in a novel ceramic microchannel reactor

Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2013-07, Vol.38 (21), p.8741-8750
Hauptverfasser: Murphy, Danielle M., Manerbino, Anthony, Parker, Margarite, Blasi, Justin, Kee, Robert J., Sullivan, Neal P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8750
container_issue 21
container_start_page 8741
container_title International journal of hydrogen energy
container_volume 38
creator Murphy, Danielle M.
Manerbino, Anthony
Parker, Margarite
Blasi, Justin
Kee, Robert J.
Sullivan, Neal P.
description Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts, including very-high-temperature operation, corrosion resistance in harsh chemical environments, low cost of materials and manufacturing, and compatibility with ceramic-supported catalysts. This work describes a ceramic microchannel reactor that achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. A complete computational fluid dynamics (CFD) model as well as a geometrically simplified hybrid CFD/chemical kinetics model is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the ceramic microchannel structure. Heat-exchanger effectiveness of up to 88% is experimentally demonstrated. Reactive heat-exchanger performance for methane-steam reforming reaches 100% methane conversion and high selectivity to syngas at a gas hourly space velocities (GHSV) of 15,000 h−1. Model results agree well with experimental data and provide insight into physical processes underway during reactor operation. •A hermetically sealed ceramic microchannel heat exchanger and reactor is developed.•Methane steam reforming is experimentally demonstrated.•A CFD model incorporating complex surface chemistry is created.•Model provides insight into physical processes underway during reactor operation.
doi_str_mv 10.1016/j.ijhydene.2013.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506398666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319913011737</els_id><sourcerecordid>1506398666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-decd3a397d50d5d684232a09feec6a6a05761190a6f197e8036511ff1a805c183</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BelF8NI60zRpc1JZ_IIVL3oOIZ26Kf1Yk-7C_nuzrHr1MAwM78y878PYJUKGgPKmzVy72tU0UJYD8gxEBlgcsRlWpUp5UZXHbAZcQspRqVN2FkILgCUUasZuX2lamYGSMJHpE0_N6Hs3fCZuSEwyjFvqEkve9M4msfxoo3qIQ0_GTqM_ZyeN6QJd_PQ5-3h8eF88p8u3p5fF_TK1BeZTWpOtueGqrAXUopZVkfPcgGqIrDTSgCglogIjG1QlVdGuQGwaNBUIixWfs-vD3bUfvzYUJt27YKnrovdxEzQKkFxVUsoolQdpdBtCTKTX3vXG7zSC3hPTrf4lpvfENAgdicXFq58fJljTNd4M1oW_7bwUEZnce7k76CgG3jryOlhHg6XaebKTrkf336tvBk2ENw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506398666</pqid></control><display><type>article</type><title>Methane steam reforming in a novel ceramic microchannel reactor</title><source>Elsevier ScienceDirect Journals</source><creator>Murphy, Danielle M. ; Manerbino, Anthony ; Parker, Margarite ; Blasi, Justin ; Kee, Robert J. ; Sullivan, Neal P.</creator><creatorcontrib>Murphy, Danielle M. ; Manerbino, Anthony ; Parker, Margarite ; Blasi, Justin ; Kee, Robert J. ; Sullivan, Neal P.</creatorcontrib><description>Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts, including very-high-temperature operation, corrosion resistance in harsh chemical environments, low cost of materials and manufacturing, and compatibility with ceramic-supported catalysts. This work describes a ceramic microchannel reactor that achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. A complete computational fluid dynamics (CFD) model as well as a geometrically simplified hybrid CFD/chemical kinetics model is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the ceramic microchannel structure. Heat-exchanger effectiveness of up to 88% is experimentally demonstrated. Reactive heat-exchanger performance for methane-steam reforming reaches 100% methane conversion and high selectivity to syngas at a gas hourly space velocities (GHSV) of 15,000 h−1. Model results agree well with experimental data and provide insight into physical processes underway during reactor operation. •A hermetically sealed ceramic microchannel heat exchanger and reactor is developed.•Methane steam reforming is experimentally demonstrated.•A CFD model incorporating complex surface chemistry is created.•Model provides insight into physical processes underway during reactor operation.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.05.014</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Catalysis ; Ceramic microchannel reactor ; Ceramics ; Computational fluid dynamics ; Energy ; Exact sciences and technology ; Fuels ; Heat exchangers ; Hydrogen ; Mathematical models ; Methane ; Methane steam reforming ; Microchannels ; Reactors</subject><ispartof>International journal of hydrogen energy, 2013-07, Vol.38 (21), p.8741-8750</ispartof><rights>2013 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-decd3a397d50d5d684232a09feec6a6a05761190a6f197e8036511ff1a805c183</citedby><cites>FETCH-LOGICAL-c412t-decd3a397d50d5d684232a09feec6a6a05761190a6f197e8036511ff1a805c183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319913011737$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27504968$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Murphy, Danielle M.</creatorcontrib><creatorcontrib>Manerbino, Anthony</creatorcontrib><creatorcontrib>Parker, Margarite</creatorcontrib><creatorcontrib>Blasi, Justin</creatorcontrib><creatorcontrib>Kee, Robert J.</creatorcontrib><creatorcontrib>Sullivan, Neal P.</creatorcontrib><title>Methane steam reforming in a novel ceramic microchannel reactor</title><title>International journal of hydrogen energy</title><description>Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts, including very-high-temperature operation, corrosion resistance in harsh chemical environments, low cost of materials and manufacturing, and compatibility with ceramic-supported catalysts. This work describes a ceramic microchannel reactor that achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. A complete computational fluid dynamics (CFD) model as well as a geometrically simplified hybrid CFD/chemical kinetics model is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the ceramic microchannel structure. Heat-exchanger effectiveness of up to 88% is experimentally demonstrated. Reactive heat-exchanger performance for methane-steam reforming reaches 100% methane conversion and high selectivity to syngas at a gas hourly space velocities (GHSV) of 15,000 h−1. Model results agree well with experimental data and provide insight into physical processes underway during reactor operation. •A hermetically sealed ceramic microchannel heat exchanger and reactor is developed.•Methane steam reforming is experimentally demonstrated.•A CFD model incorporating complex surface chemistry is created.•Model provides insight into physical processes underway during reactor operation.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Ceramic microchannel reactor</subject><subject>Ceramics</subject><subject>Computational fluid dynamics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Heat exchangers</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Methane steam reforming</subject><subject>Microchannels</subject><subject>Reactors</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BelF8NI60zRpc1JZ_IIVL3oOIZ26Kf1Yk-7C_nuzrHr1MAwM78y878PYJUKGgPKmzVy72tU0UJYD8gxEBlgcsRlWpUp5UZXHbAZcQspRqVN2FkILgCUUasZuX2lamYGSMJHpE0_N6Hs3fCZuSEwyjFvqEkve9M4msfxoo3qIQ0_GTqM_ZyeN6QJd_PQ5-3h8eF88p8u3p5fF_TK1BeZTWpOtueGqrAXUopZVkfPcgGqIrDTSgCglogIjG1QlVdGuQGwaNBUIixWfs-vD3bUfvzYUJt27YKnrovdxEzQKkFxVUsoolQdpdBtCTKTX3vXG7zSC3hPTrf4lpvfENAgdicXFq58fJljTNd4M1oW_7bwUEZnce7k76CgG3jryOlhHg6XaebKTrkf336tvBk2ENw</recordid><startdate>20130717</startdate><enddate>20130717</enddate><creator>Murphy, Danielle M.</creator><creator>Manerbino, Anthony</creator><creator>Parker, Margarite</creator><creator>Blasi, Justin</creator><creator>Kee, Robert J.</creator><creator>Sullivan, Neal P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130717</creationdate><title>Methane steam reforming in a novel ceramic microchannel reactor</title><author>Murphy, Danielle M. ; Manerbino, Anthony ; Parker, Margarite ; Blasi, Justin ; Kee, Robert J. ; Sullivan, Neal P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-decd3a397d50d5d684232a09feec6a6a05761190a6f197e8036511ff1a805c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Ceramic microchannel reactor</topic><topic>Ceramics</topic><topic>Computational fluid dynamics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Heat exchangers</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Methane steam reforming</topic><topic>Microchannels</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Danielle M.</creatorcontrib><creatorcontrib>Manerbino, Anthony</creatorcontrib><creatorcontrib>Parker, Margarite</creatorcontrib><creatorcontrib>Blasi, Justin</creatorcontrib><creatorcontrib>Kee, Robert J.</creatorcontrib><creatorcontrib>Sullivan, Neal P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Danielle M.</au><au>Manerbino, Anthony</au><au>Parker, Margarite</au><au>Blasi, Justin</au><au>Kee, Robert J.</au><au>Sullivan, Neal P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methane steam reforming in a novel ceramic microchannel reactor</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2013-07-17</date><risdate>2013</risdate><volume>38</volume><issue>21</issue><spage>8741</spage><epage>8750</epage><pages>8741-8750</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts, including very-high-temperature operation, corrosion resistance in harsh chemical environments, low cost of materials and manufacturing, and compatibility with ceramic-supported catalysts. This work describes a ceramic microchannel reactor that achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. A complete computational fluid dynamics (CFD) model as well as a geometrically simplified hybrid CFD/chemical kinetics model is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the ceramic microchannel structure. Heat-exchanger effectiveness of up to 88% is experimentally demonstrated. Reactive heat-exchanger performance for methane-steam reforming reaches 100% methane conversion and high selectivity to syngas at a gas hourly space velocities (GHSV) of 15,000 h−1. Model results agree well with experimental data and provide insight into physical processes underway during reactor operation. •A hermetically sealed ceramic microchannel heat exchanger and reactor is developed.•Methane steam reforming is experimentally demonstrated.•A CFD model incorporating complex surface chemistry is created.•Model provides insight into physical processes underway during reactor operation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2013.05.014</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2013-07, Vol.38 (21), p.8741-8750
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1506398666
source Elsevier ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Applied sciences
Catalysis
Ceramic microchannel reactor
Ceramics
Computational fluid dynamics
Energy
Exact sciences and technology
Fuels
Heat exchangers
Hydrogen
Mathematical models
Methane
Methane steam reforming
Microchannels
Reactors
title Methane steam reforming in a novel ceramic microchannel reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methane%20steam%20reforming%20in%20a%20novel%20ceramic%20microchannel%20reactor&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Murphy,%20Danielle%20M.&rft.date=2013-07-17&rft.volume=38&rft.issue=21&rft.spage=8741&rft.epage=8750&rft.pages=8741-8750&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.05.014&rft_dat=%3Cproquest_cross%3E1506398666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506398666&rft_id=info:pmid/&rft_els_id=S0360319913011737&rfr_iscdi=true