Methane steam reforming in a novel ceramic microchannel reactor
Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2013-07, Vol.38 (21), p.8741-8750 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8750 |
---|---|
container_issue | 21 |
container_start_page | 8741 |
container_title | International journal of hydrogen energy |
container_volume | 38 |
creator | Murphy, Danielle M. Manerbino, Anthony Parker, Margarite Blasi, Justin Kee, Robert J. Sullivan, Neal P. |
description | Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts, including very-high-temperature operation, corrosion resistance in harsh chemical environments, low cost of materials and manufacturing, and compatibility with ceramic-supported catalysts. This work describes a ceramic microchannel reactor that achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. A complete computational fluid dynamics (CFD) model as well as a geometrically simplified hybrid CFD/chemical kinetics model is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the ceramic microchannel structure. Heat-exchanger effectiveness of up to 88% is experimentally demonstrated. Reactive heat-exchanger performance for methane-steam reforming reaches 100% methane conversion and high selectivity to syngas at a gas hourly space velocities (GHSV) of 15,000 h−1. Model results agree well with experimental data and provide insight into physical processes underway during reactor operation.
•A hermetically sealed ceramic microchannel heat exchanger and reactor is developed.•Methane steam reforming is experimentally demonstrated.•A CFD model incorporating complex surface chemistry is created.•Model provides insight into physical processes underway during reactor operation. |
doi_str_mv | 10.1016/j.ijhydene.2013.05.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506398666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319913011737</els_id><sourcerecordid>1506398666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-decd3a397d50d5d684232a09feec6a6a05761190a6f197e8036511ff1a805c183</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BelF8NI60zRpc1JZ_IIVL3oOIZ26Kf1Yk-7C_nuzrHr1MAwM78y878PYJUKGgPKmzVy72tU0UJYD8gxEBlgcsRlWpUp5UZXHbAZcQspRqVN2FkILgCUUasZuX2lamYGSMJHpE0_N6Hs3fCZuSEwyjFvqEkve9M4msfxoo3qIQ0_GTqM_ZyeN6QJd_PQ5-3h8eF88p8u3p5fF_TK1BeZTWpOtueGqrAXUopZVkfPcgGqIrDTSgCglogIjG1QlVdGuQGwaNBUIixWfs-vD3bUfvzYUJt27YKnrovdxEzQKkFxVUsoolQdpdBtCTKTX3vXG7zSC3hPTrf4lpvfENAgdicXFq58fJljTNd4M1oW_7bwUEZnce7k76CgG3jryOlhHg6XaebKTrkf336tvBk2ENw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506398666</pqid></control><display><type>article</type><title>Methane steam reforming in a novel ceramic microchannel reactor</title><source>Elsevier ScienceDirect Journals</source><creator>Murphy, Danielle M. ; Manerbino, Anthony ; Parker, Margarite ; Blasi, Justin ; Kee, Robert J. ; Sullivan, Neal P.</creator><creatorcontrib>Murphy, Danielle M. ; Manerbino, Anthony ; Parker, Margarite ; Blasi, Justin ; Kee, Robert J. ; Sullivan, Neal P.</creatorcontrib><description>Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts, including very-high-temperature operation, corrosion resistance in harsh chemical environments, low cost of materials and manufacturing, and compatibility with ceramic-supported catalysts. This work describes a ceramic microchannel reactor that achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. A complete computational fluid dynamics (CFD) model as well as a geometrically simplified hybrid CFD/chemical kinetics model is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the ceramic microchannel structure. Heat-exchanger effectiveness of up to 88% is experimentally demonstrated. Reactive heat-exchanger performance for methane-steam reforming reaches 100% methane conversion and high selectivity to syngas at a gas hourly space velocities (GHSV) of 15,000 h−1. Model results agree well with experimental data and provide insight into physical processes underway during reactor operation.
•A hermetically sealed ceramic microchannel heat exchanger and reactor is developed.•Methane steam reforming is experimentally demonstrated.•A CFD model incorporating complex surface chemistry is created.•Model provides insight into physical processes underway during reactor operation.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.05.014</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Catalysis ; Ceramic microchannel reactor ; Ceramics ; Computational fluid dynamics ; Energy ; Exact sciences and technology ; Fuels ; Heat exchangers ; Hydrogen ; Mathematical models ; Methane ; Methane steam reforming ; Microchannels ; Reactors</subject><ispartof>International journal of hydrogen energy, 2013-07, Vol.38 (21), p.8741-8750</ispartof><rights>2013 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-decd3a397d50d5d684232a09feec6a6a05761190a6f197e8036511ff1a805c183</citedby><cites>FETCH-LOGICAL-c412t-decd3a397d50d5d684232a09feec6a6a05761190a6f197e8036511ff1a805c183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319913011737$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27504968$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Murphy, Danielle M.</creatorcontrib><creatorcontrib>Manerbino, Anthony</creatorcontrib><creatorcontrib>Parker, Margarite</creatorcontrib><creatorcontrib>Blasi, Justin</creatorcontrib><creatorcontrib>Kee, Robert J.</creatorcontrib><creatorcontrib>Sullivan, Neal P.</creatorcontrib><title>Methane steam reforming in a novel ceramic microchannel reactor</title><title>International journal of hydrogen energy</title><description>Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts, including very-high-temperature operation, corrosion resistance in harsh chemical environments, low cost of materials and manufacturing, and compatibility with ceramic-supported catalysts. This work describes a ceramic microchannel reactor that achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. A complete computational fluid dynamics (CFD) model as well as a geometrically simplified hybrid CFD/chemical kinetics model is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the ceramic microchannel structure. Heat-exchanger effectiveness of up to 88% is experimentally demonstrated. Reactive heat-exchanger performance for methane-steam reforming reaches 100% methane conversion and high selectivity to syngas at a gas hourly space velocities (GHSV) of 15,000 h−1. Model results agree well with experimental data and provide insight into physical processes underway during reactor operation.
•A hermetically sealed ceramic microchannel heat exchanger and reactor is developed.•Methane steam reforming is experimentally demonstrated.•A CFD model incorporating complex surface chemistry is created.•Model provides insight into physical processes underway during reactor operation.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Ceramic microchannel reactor</subject><subject>Ceramics</subject><subject>Computational fluid dynamics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Heat exchangers</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Methane steam reforming</subject><subject>Microchannels</subject><subject>Reactors</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BelF8NI60zRpc1JZ_IIVL3oOIZ26Kf1Yk-7C_nuzrHr1MAwM78y878PYJUKGgPKmzVy72tU0UJYD8gxEBlgcsRlWpUp5UZXHbAZcQspRqVN2FkILgCUUasZuX2lamYGSMJHpE0_N6Hs3fCZuSEwyjFvqEkve9M4msfxoo3qIQ0_GTqM_ZyeN6QJd_PQ5-3h8eF88p8u3p5fF_TK1BeZTWpOtueGqrAXUopZVkfPcgGqIrDTSgCglogIjG1QlVdGuQGwaNBUIixWfs-vD3bUfvzYUJt27YKnrovdxEzQKkFxVUsoolQdpdBtCTKTX3vXG7zSC3hPTrf4lpvfENAgdicXFq58fJljTNd4M1oW_7bwUEZnce7k76CgG3jryOlhHg6XaebKTrkf336tvBk2ENw</recordid><startdate>20130717</startdate><enddate>20130717</enddate><creator>Murphy, Danielle M.</creator><creator>Manerbino, Anthony</creator><creator>Parker, Margarite</creator><creator>Blasi, Justin</creator><creator>Kee, Robert J.</creator><creator>Sullivan, Neal P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130717</creationdate><title>Methane steam reforming in a novel ceramic microchannel reactor</title><author>Murphy, Danielle M. ; Manerbino, Anthony ; Parker, Margarite ; Blasi, Justin ; Kee, Robert J. ; Sullivan, Neal P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-decd3a397d50d5d684232a09feec6a6a05761190a6f197e8036511ff1a805c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Ceramic microchannel reactor</topic><topic>Ceramics</topic><topic>Computational fluid dynamics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Heat exchangers</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Methane steam reforming</topic><topic>Microchannels</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Danielle M.</creatorcontrib><creatorcontrib>Manerbino, Anthony</creatorcontrib><creatorcontrib>Parker, Margarite</creatorcontrib><creatorcontrib>Blasi, Justin</creatorcontrib><creatorcontrib>Kee, Robert J.</creatorcontrib><creatorcontrib>Sullivan, Neal P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Danielle M.</au><au>Manerbino, Anthony</au><au>Parker, Margarite</au><au>Blasi, Justin</au><au>Kee, Robert J.</au><au>Sullivan, Neal P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methane steam reforming in a novel ceramic microchannel reactor</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2013-07-17</date><risdate>2013</risdate><volume>38</volume><issue>21</issue><spage>8741</spage><epage>8750</epage><pages>8741-8750</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from aluminum, copper, stainless steel, and silicon materials. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts, including very-high-temperature operation, corrosion resistance in harsh chemical environments, low cost of materials and manufacturing, and compatibility with ceramic-supported catalysts. This work describes a ceramic microchannel reactor that achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. A complete computational fluid dynamics (CFD) model as well as a geometrically simplified hybrid CFD/chemical kinetics model is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the ceramic microchannel structure. Heat-exchanger effectiveness of up to 88% is experimentally demonstrated. Reactive heat-exchanger performance for methane-steam reforming reaches 100% methane conversion and high selectivity to syngas at a gas hourly space velocities (GHSV) of 15,000 h−1. Model results agree well with experimental data and provide insight into physical processes underway during reactor operation.
•A hermetically sealed ceramic microchannel heat exchanger and reactor is developed.•Methane steam reforming is experimentally demonstrated.•A CFD model incorporating complex surface chemistry is created.•Model provides insight into physical processes underway during reactor operation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2013.05.014</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2013-07, Vol.38 (21), p.8741-8750 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506398666 |
source | Elsevier ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Applied sciences Catalysis Ceramic microchannel reactor Ceramics Computational fluid dynamics Energy Exact sciences and technology Fuels Heat exchangers Hydrogen Mathematical models Methane Methane steam reforming Microchannels Reactors |
title | Methane steam reforming in a novel ceramic microchannel reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methane%20steam%20reforming%20in%20a%20novel%20ceramic%20microchannel%20reactor&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Murphy,%20Danielle%20M.&rft.date=2013-07-17&rft.volume=38&rft.issue=21&rft.spage=8741&rft.epage=8750&rft.pages=8741-8750&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.05.014&rft_dat=%3Cproquest_cross%3E1506398666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506398666&rft_id=info:pmid/&rft_els_id=S0360319913011737&rfr_iscdi=true |