Synthesis and hydrogen storage studies of metal−organic framework UiO-66
Metal−organic framework UiO-66 has high chemical and thermal stability. However, it is difficult to produce such Zr-based MOFs with good crystalline morphology. Here, highly pure metal−organic framework UiO-66 has been synthesized at low temperature (50 °C). The as-synthesized sample has been charac...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2013-09, Vol.38 (29), p.13104-13109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13109 |
---|---|
container_issue | 29 |
container_start_page | 13104 |
container_title | International journal of hydrogen energy |
container_volume | 38 |
creator | Zhao, Qiang Yuan, Wen Liang, Jianming Li, Jinping |
description | Metal−organic framework UiO-66 has high chemical and thermal stability. However, it is difficult to produce such Zr-based MOFs with good crystalline morphology. Here, highly pure metal−organic framework UiO-66 has been synthesized at low temperature (50 °C). The as-synthesized sample has been characterized by X-ray diffraction, thermogravimetric analysis, nitrogen adsorption, and scanning electron microscopy. Its hydrogen-storage capacity has been measured by means of an Intelligent Gravimetric Analyser. The results showed that UiO-66 was synthesized in octahedral crystals of well-defined sizes (150−200 nm) and had a high specific surface area (1358 m2/g). The as-synthesized UiO-66 showed a significant hydrogen uptake even at a moderate pressure, which increased to 3.35 wt% at 77 K and 1.8 MPa. A grand canonical Monte Carlo simulation (GCMC) has been employed to calculate the adsorption of hydrogen in UiO-66. The result of this simulation provided a theoretical foundation for the experimental results.
[Display omitted]
► UiO-66 was synthesized in octahedral crystals of well-defined sizes at low temperature. ► The sample had a high specific surface area (1358 m2/g). ► UiO-66 showed a significant hydrogen uptake increased to 3.35 wt% at 77 K and 1.8 MPa. ► According to GCMC simulation, the phenyl rings of the BDC linkers were the first adsorption sites. |
doi_str_mv | 10.1016/j.ijhydene.2013.01.163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506395080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319913002723</els_id><sourcerecordid>1506395080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-6b94f4a4bcdf12c7285f4db47dd85aeea49e6510e00fa0b9189ed522f236e0a73</originalsourceid><addsrcrecordid>eNqFkLtOwzAYhS0EEuXyCigLEkvCb8dx4g2EuAqJAZgt1_5dXNK42Cmob8DMI_IkpGphZTrLueh8hBxRKChQcTot_PRlabHDggEtC6AFFeUWGdGmlnnJm3qbjKAUkJdUyl2yl9IUgNbA5YjcPS67_gWTT5nubDb0xDDBLkt9iHqCgy6sx5QFl82w1-3351eIE915k7moZ_gR4mv27B9yIQ7IjtNtwsON7pPnq8uni5v8_uH69uL8Pjecsj4XY8kd13xsrKPM1KypHLdjXlvbVBpRc4miooAATsNY0kairRhzrBQIui73ycm6dx7D2wJTr2Y-GWxb3WFYJEUrEKWsoIHBKtZWE0NKEZ2aRz_TcakoqBU8NVW_8NQKngKqBnhD8HizoZPR7XC1Mz79pVldV6ySq4GztQ-Hw-8eo0rGY2fQ-oimVzb4_6Z-AL7pifw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506395080</pqid></control><display><type>article</type><title>Synthesis and hydrogen storage studies of metal−organic framework UiO-66</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Qiang ; Yuan, Wen ; Liang, Jianming ; Li, Jinping</creator><creatorcontrib>Zhao, Qiang ; Yuan, Wen ; Liang, Jianming ; Li, Jinping</creatorcontrib><description>Metal−organic framework UiO-66 has high chemical and thermal stability. However, it is difficult to produce such Zr-based MOFs with good crystalline morphology. Here, highly pure metal−organic framework UiO-66 has been synthesized at low temperature (50 °C). The as-synthesized sample has been characterized by X-ray diffraction, thermogravimetric analysis, nitrogen adsorption, and scanning electron microscopy. Its hydrogen-storage capacity has been measured by means of an Intelligent Gravimetric Analyser. The results showed that UiO-66 was synthesized in octahedral crystals of well-defined sizes (150−200 nm) and had a high specific surface area (1358 m2/g). The as-synthesized UiO-66 showed a significant hydrogen uptake even at a moderate pressure, which increased to 3.35 wt% at 77 K and 1.8 MPa. A grand canonical Monte Carlo simulation (GCMC) has been employed to calculate the adsorption of hydrogen in UiO-66. The result of this simulation provided a theoretical foundation for the experimental results.
[Display omitted]
► UiO-66 was synthesized in octahedral crystals of well-defined sizes at low temperature. ► The sample had a high specific surface area (1358 m2/g). ► UiO-66 showed a significant hydrogen uptake increased to 3.35 wt% at 77 K and 1.8 MPa. ► According to GCMC simulation, the phenyl rings of the BDC linkers were the first adsorption sites.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.01.163</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adsorption ; Alternative fuels. Production and utilization ; Applied sciences ; Computer simulation ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; Hydrogen storage ; Metal-organic frameworks ; Metal−organic framework ; Monte Carlo methods ; Simulation ; Specific surface ; Surface chemistry ; Synthesis ; Thermogravimetric analysis ; UiO-66 ; Zirconium</subject><ispartof>International journal of hydrogen energy, 2013-09, Vol.38 (29), p.13104-13109</ispartof><rights>2013 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-6b94f4a4bcdf12c7285f4db47dd85aeea49e6510e00fa0b9189ed522f236e0a73</citedby><cites>FETCH-LOGICAL-c412t-6b94f4a4bcdf12c7285f4db47dd85aeea49e6510e00fa0b9189ed522f236e0a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2013.01.163$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27752590$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Yuan, Wen</creatorcontrib><creatorcontrib>Liang, Jianming</creatorcontrib><creatorcontrib>Li, Jinping</creatorcontrib><title>Synthesis and hydrogen storage studies of metal−organic framework UiO-66</title><title>International journal of hydrogen energy</title><description>Metal−organic framework UiO-66 has high chemical and thermal stability. However, it is difficult to produce such Zr-based MOFs with good crystalline morphology. Here, highly pure metal−organic framework UiO-66 has been synthesized at low temperature (50 °C). The as-synthesized sample has been characterized by X-ray diffraction, thermogravimetric analysis, nitrogen adsorption, and scanning electron microscopy. Its hydrogen-storage capacity has been measured by means of an Intelligent Gravimetric Analyser. The results showed that UiO-66 was synthesized in octahedral crystals of well-defined sizes (150−200 nm) and had a high specific surface area (1358 m2/g). The as-synthesized UiO-66 showed a significant hydrogen uptake even at a moderate pressure, which increased to 3.35 wt% at 77 K and 1.8 MPa. A grand canonical Monte Carlo simulation (GCMC) has been employed to calculate the adsorption of hydrogen in UiO-66. The result of this simulation provided a theoretical foundation for the experimental results.
[Display omitted]
► UiO-66 was synthesized in octahedral crystals of well-defined sizes at low temperature. ► The sample had a high specific surface area (1358 m2/g). ► UiO-66 showed a significant hydrogen uptake increased to 3.35 wt% at 77 K and 1.8 MPa. ► According to GCMC simulation, the phenyl rings of the BDC linkers were the first adsorption sites.</description><subject>Adsorption</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Metal-organic frameworks</subject><subject>Metal−organic framework</subject><subject>Monte Carlo methods</subject><subject>Simulation</subject><subject>Specific surface</subject><subject>Surface chemistry</subject><subject>Synthesis</subject><subject>Thermogravimetric analysis</subject><subject>UiO-66</subject><subject>Zirconium</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAYhS0EEuXyCigLEkvCb8dx4g2EuAqJAZgt1_5dXNK42Cmob8DMI_IkpGphZTrLueh8hBxRKChQcTot_PRlabHDggEtC6AFFeUWGdGmlnnJm3qbjKAUkJdUyl2yl9IUgNbA5YjcPS67_gWTT5nubDb0xDDBLkt9iHqCgy6sx5QFl82w1-3351eIE915k7moZ_gR4mv27B9yIQ7IjtNtwsON7pPnq8uni5v8_uH69uL8Pjecsj4XY8kd13xsrKPM1KypHLdjXlvbVBpRc4miooAATsNY0kairRhzrBQIui73ycm6dx7D2wJTr2Y-GWxb3WFYJEUrEKWsoIHBKtZWE0NKEZ2aRz_TcakoqBU8NVW_8NQKngKqBnhD8HizoZPR7XC1Mz79pVldV6ySq4GztQ-Hw-8eo0rGY2fQ-oimVzb4_6Z-AL7pifw</recordid><startdate>20130930</startdate><enddate>20130930</enddate><creator>Zhao, Qiang</creator><creator>Yuan, Wen</creator><creator>Liang, Jianming</creator><creator>Li, Jinping</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130930</creationdate><title>Synthesis and hydrogen storage studies of metal−organic framework UiO-66</title><author>Zhao, Qiang ; Yuan, Wen ; Liang, Jianming ; Li, Jinping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-6b94f4a4bcdf12c7285f4db47dd85aeea49e6510e00fa0b9189ed522f236e0a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Metal-organic frameworks</topic><topic>Metal−organic framework</topic><topic>Monte Carlo methods</topic><topic>Simulation</topic><topic>Specific surface</topic><topic>Surface chemistry</topic><topic>Synthesis</topic><topic>Thermogravimetric analysis</topic><topic>UiO-66</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Yuan, Wen</creatorcontrib><creatorcontrib>Liang, Jianming</creatorcontrib><creatorcontrib>Li, Jinping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qiang</au><au>Yuan, Wen</au><au>Liang, Jianming</au><au>Li, Jinping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and hydrogen storage studies of metal−organic framework UiO-66</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2013-09-30</date><risdate>2013</risdate><volume>38</volume><issue>29</issue><spage>13104</spage><epage>13109</epage><pages>13104-13109</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Metal−organic framework UiO-66 has high chemical and thermal stability. However, it is difficult to produce such Zr-based MOFs with good crystalline morphology. Here, highly pure metal−organic framework UiO-66 has been synthesized at low temperature (50 °C). The as-synthesized sample has been characterized by X-ray diffraction, thermogravimetric analysis, nitrogen adsorption, and scanning electron microscopy. Its hydrogen-storage capacity has been measured by means of an Intelligent Gravimetric Analyser. The results showed that UiO-66 was synthesized in octahedral crystals of well-defined sizes (150−200 nm) and had a high specific surface area (1358 m2/g). The as-synthesized UiO-66 showed a significant hydrogen uptake even at a moderate pressure, which increased to 3.35 wt% at 77 K and 1.8 MPa. A grand canonical Monte Carlo simulation (GCMC) has been employed to calculate the adsorption of hydrogen in UiO-66. The result of this simulation provided a theoretical foundation for the experimental results.
[Display omitted]
► UiO-66 was synthesized in octahedral crystals of well-defined sizes at low temperature. ► The sample had a high specific surface area (1358 m2/g). ► UiO-66 showed a significant hydrogen uptake increased to 3.35 wt% at 77 K and 1.8 MPa. ► According to GCMC simulation, the phenyl rings of the BDC linkers were the first adsorption sites.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2013.01.163</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2013-09, Vol.38 (29), p.13104-13109 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506395080 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Adsorption Alternative fuels. Production and utilization Applied sciences Computer simulation Energy Exact sciences and technology Fuels Hydrogen Hydrogen storage Metal-organic frameworks Metal−organic framework Monte Carlo methods Simulation Specific surface Surface chemistry Synthesis Thermogravimetric analysis UiO-66 Zirconium |
title | Synthesis and hydrogen storage studies of metal−organic framework UiO-66 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20hydrogen%20storage%20studies%20of%20metal%E2%88%92organic%20framework%20UiO-66&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Zhao,%20Qiang&rft.date=2013-09-30&rft.volume=38&rft.issue=29&rft.spage=13104&rft.epage=13109&rft.pages=13104-13109&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.01.163&rft_dat=%3Cproquest_cross%3E1506395080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506395080&rft_id=info:pmid/&rft_els_id=S0360319913002723&rfr_iscdi=true |