Properties of thermodynamic equilibrium-based methane autothermal reforming to generate hydrogen

The characteristics of methane autothermal reforming to generate hydrogen were studied with thermodynamic equilibrium constant method. Results show that the methane steam reforming reaction is prone to backward at low temperature, and there is an inflection point temperature that the reaction turns...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2013-11, Vol.38 (35), p.15744-15750
Hauptverfasser: Yan, Yunfei, Zhang, Jie, Zhang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The characteristics of methane autothermal reforming to generate hydrogen were studied with thermodynamic equilibrium constant method. Results show that the methane steam reforming reaction is prone to backward at low temperature, and there is an inflection point temperature that the reaction turns forward. When steam–methane molar ratio is 2, the inflection point temperature increases with raising air–methane molar ratio. When air–methane molar ratio is 1, the inflection point temperature maintains between 700 and 800 K. Hydrogen yield increases firstly and then decreases with elevated temperature. The increase of air–methane molar ratio leads to a lower hydrogen production when temperature exceeds 1000 K. Increasing steam–methane molar ratio promotes the hydrogen production. Methane autothermal reforming occurs much more easily when temperature keeps at 1000 K and the molar ratio of air–methane and steam–methane is 1 and 2 respectively. Changing the steam–methane molar ratio can regulate H2/CO molar ratio. •We studied characteristics of methane autothermal reforming to generate hydrogen.•There is an inflection point temperature that the reaction turning to forward.•Changing the steam–methane molar ratio can regulate H2/CO mole ratio.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2013.06.007