Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates

Using the improved double distribution function (DDF) thermal Lattice Boltzmann method (LBM), dropwise condensation of dry saturated vapor at a cold spot on vertical hydrophobic flat plates under gravity effects are simulated numerically for the first time. Dynamic behaviors of periodic formation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2013-09, Vol.64, p.1041-1052
Hauptverfasser: Liu, Xiuliang, Cheng, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1052
container_issue
container_start_page 1041
container_title International journal of heat and mass transfer
container_volume 64
creator Liu, Xiuliang
Cheng, Ping
description Using the improved double distribution function (DDF) thermal Lattice Boltzmann method (LBM), dropwise condensation of dry saturated vapor at a cold spot on vertical hydrophobic flat plates under gravity effects are simulated numerically for the first time. Dynamic behaviors of periodic formation of 3D condensing droplets on a 2D cold spot at a constant subcooled temperature, and their subsequent growth, and movement on hydrophobic surfaces are studied. The size of detached droplet on hydrophobic surfaces with different wettabilities under various gravity forces are simulated, and the results are found in good agreement with existing analytical predictions. The induced transient velocity and temperature fields and the variation of dropwise condensation heat flux with time at the cold spot on hydrophobic surfaces are analyzed. It is found that both the period of droplet condensation and its maximum heat transfer rates decrease as the contact angle of the surface is increased.
doi_str_mv 10.1016/j.ijheatmasstransfer.2013.05.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506391894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931013004328</els_id><sourcerecordid>1464561964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-89f16969b04c4ff87425c78368f52964783461e61fb707355fb59725b5aa165f3</originalsourceid><addsrcrecordid>eNqNkUFv3CAQhVHVSNlu8h845mIXbMDm1nbVpo1WyiU5I8wOWVY2uMBulfz6YG1vOSSXmUHv6RsxD6EbSmpKqPh6qN1hDzpPOqUctU8WYt0Q2taE14Q1n9CK9p2sGtrLz2hFCO0q2VJyib6kdFiehIkVsludszOAf4Qxv0zae5zcdBx1dsFjGyLexTD_cwmwCX4HPp2VYPFJz0XWY_BP-ASxUPSI98-Lfx8GZ7AtFDyXAukKXVg9Jrj-39fo8dfPh83vant_-2fzfVsZRvpc9dJSIYUcCDPM2r5jDTdd34re8kYKVkYmKAhqh450Led24LJr-MC1poLbdo1uztw5hr9HSFlNLhkYR-0hHJOinIhWlpOw961MMC5o2Vqs385WE0NKEayao5t0fFaUqCUNdVBv01BLGopwVdIoiLszAsrvT66oyTjwBnYugslqF9zHYa_Wa6C3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464561964</pqid></control><display><type>article</type><title>Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xiuliang ; Cheng, Ping</creator><creatorcontrib>Liu, Xiuliang ; Cheng, Ping</creatorcontrib><description>Using the improved double distribution function (DDF) thermal Lattice Boltzmann method (LBM), dropwise condensation of dry saturated vapor at a cold spot on vertical hydrophobic flat plates under gravity effects are simulated numerically for the first time. Dynamic behaviors of periodic formation of 3D condensing droplets on a 2D cold spot at a constant subcooled temperature, and their subsequent growth, and movement on hydrophobic surfaces are studied. The size of detached droplet on hydrophobic surfaces with different wettabilities under various gravity forces are simulated, and the results are found in good agreement with existing analytical predictions. The induced transient velocity and temperature fields and the variation of dropwise condensation heat flux with time at the cold spot on hydrophobic surfaces are analyzed. It is found that both the period of droplet condensation and its maximum heat transfer rates decrease as the contact angle of the surface is increased.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2013.05.042</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Condensation ; Condensing ; Droplet movement ; Droplets ; Dropwise condensation ; Flat plates ; Gravitation ; Heat transfer ; Lattice Boltzmann method ; Lattices ; Mathematical models ; Simulation</subject><ispartof>International journal of heat and mass transfer, 2013-09, Vol.64, p.1041-1052</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-89f16969b04c4ff87425c78368f52964783461e61fb707355fb59725b5aa165f3</citedby><cites>FETCH-LOGICAL-c408t-89f16969b04c4ff87425c78368f52964783461e61fb707355fb59725b5aa165f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931013004328$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, Xiuliang</creatorcontrib><creatorcontrib>Cheng, Ping</creatorcontrib><title>Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates</title><title>International journal of heat and mass transfer</title><description>Using the improved double distribution function (DDF) thermal Lattice Boltzmann method (LBM), dropwise condensation of dry saturated vapor at a cold spot on vertical hydrophobic flat plates under gravity effects are simulated numerically for the first time. Dynamic behaviors of periodic formation of 3D condensing droplets on a 2D cold spot at a constant subcooled temperature, and their subsequent growth, and movement on hydrophobic surfaces are studied. The size of detached droplet on hydrophobic surfaces with different wettabilities under various gravity forces are simulated, and the results are found in good agreement with existing analytical predictions. The induced transient velocity and temperature fields and the variation of dropwise condensation heat flux with time at the cold spot on hydrophobic surfaces are analyzed. It is found that both the period of droplet condensation and its maximum heat transfer rates decrease as the contact angle of the surface is increased.</description><subject>Condensation</subject><subject>Condensing</subject><subject>Droplet movement</subject><subject>Droplets</subject><subject>Dropwise condensation</subject><subject>Flat plates</subject><subject>Gravitation</subject><subject>Heat transfer</subject><subject>Lattice Boltzmann method</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Simulation</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv3CAQhVHVSNlu8h845mIXbMDm1nbVpo1WyiU5I8wOWVY2uMBulfz6YG1vOSSXmUHv6RsxD6EbSmpKqPh6qN1hDzpPOqUctU8WYt0Q2taE14Q1n9CK9p2sGtrLz2hFCO0q2VJyib6kdFiehIkVsludszOAf4Qxv0zae5zcdBx1dsFjGyLexTD_cwmwCX4HPp2VYPFJz0XWY_BP-ASxUPSI98-Lfx8GZ7AtFDyXAukKXVg9Jrj-39fo8dfPh83vant_-2fzfVsZRvpc9dJSIYUcCDPM2r5jDTdd34re8kYKVkYmKAhqh450Led24LJr-MC1poLbdo1uztw5hr9HSFlNLhkYR-0hHJOinIhWlpOw961MMC5o2Vqs385WE0NKEayao5t0fFaUqCUNdVBv01BLGopwVdIoiLszAsrvT66oyTjwBnYugslqF9zHYa_Wa6C3</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Liu, Xiuliang</creator><creator>Cheng, Ping</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates</title><author>Liu, Xiuliang ; Cheng, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-89f16969b04c4ff87425c78368f52964783461e61fb707355fb59725b5aa165f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensation</topic><topic>Condensing</topic><topic>Droplet movement</topic><topic>Droplets</topic><topic>Dropwise condensation</topic><topic>Flat plates</topic><topic>Gravitation</topic><topic>Heat transfer</topic><topic>Lattice Boltzmann method</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiuliang</creatorcontrib><creatorcontrib>Cheng, Ping</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiuliang</au><au>Cheng, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>64</volume><spage>1041</spage><epage>1052</epage><pages>1041-1052</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>Using the improved double distribution function (DDF) thermal Lattice Boltzmann method (LBM), dropwise condensation of dry saturated vapor at a cold spot on vertical hydrophobic flat plates under gravity effects are simulated numerically for the first time. Dynamic behaviors of periodic formation of 3D condensing droplets on a 2D cold spot at a constant subcooled temperature, and their subsequent growth, and movement on hydrophobic surfaces are studied. The size of detached droplet on hydrophobic surfaces with different wettabilities under various gravity forces are simulated, and the results are found in good agreement with existing analytical predictions. The induced transient velocity and temperature fields and the variation of dropwise condensation heat flux with time at the cold spot on hydrophobic surfaces are analyzed. It is found that both the period of droplet condensation and its maximum heat transfer rates decrease as the contact angle of the surface is increased.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2013.05.042</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2013-09, Vol.64, p.1041-1052
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1506391894
source Elsevier ScienceDirect Journals
subjects Condensation
Condensing
Droplet movement
Droplets
Dropwise condensation
Flat plates
Gravitation
Heat transfer
Lattice Boltzmann method
Lattices
Mathematical models
Simulation
title Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20simulation%20for%20dropwise%20condensation%20of%20vapor%20along%20vertical%20hydrophobic%20flat%20plates&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Liu,%20Xiuliang&rft.date=2013-09-01&rft.volume=64&rft.spage=1041&rft.epage=1052&rft.pages=1041-1052&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2013.05.042&rft_dat=%3Cproquest_cross%3E1464561964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464561964&rft_id=info:pmid/&rft_els_id=S0017931013004328&rfr_iscdi=true