Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates
Using the improved double distribution function (DDF) thermal Lattice Boltzmann method (LBM), dropwise condensation of dry saturated vapor at a cold spot on vertical hydrophobic flat plates under gravity effects are simulated numerically for the first time. Dynamic behaviors of periodic formation of...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2013-09, Vol.64, p.1041-1052 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1052 |
---|---|
container_issue | |
container_start_page | 1041 |
container_title | International journal of heat and mass transfer |
container_volume | 64 |
creator | Liu, Xiuliang Cheng, Ping |
description | Using the improved double distribution function (DDF) thermal Lattice Boltzmann method (LBM), dropwise condensation of dry saturated vapor at a cold spot on vertical hydrophobic flat plates under gravity effects are simulated numerically for the first time. Dynamic behaviors of periodic formation of 3D condensing droplets on a 2D cold spot at a constant subcooled temperature, and their subsequent growth, and movement on hydrophobic surfaces are studied. The size of detached droplet on hydrophobic surfaces with different wettabilities under various gravity forces are simulated, and the results are found in good agreement with existing analytical predictions. The induced transient velocity and temperature fields and the variation of dropwise condensation heat flux with time at the cold spot on hydrophobic surfaces are analyzed. It is found that both the period of droplet condensation and its maximum heat transfer rates decrease as the contact angle of the surface is increased. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2013.05.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506391894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931013004328</els_id><sourcerecordid>1464561964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-89f16969b04c4ff87425c78368f52964783461e61fb707355fb59725b5aa165f3</originalsourceid><addsrcrecordid>eNqNkUFv3CAQhVHVSNlu8h845mIXbMDm1nbVpo1WyiU5I8wOWVY2uMBulfz6YG1vOSSXmUHv6RsxD6EbSmpKqPh6qN1hDzpPOqUctU8WYt0Q2taE14Q1n9CK9p2sGtrLz2hFCO0q2VJyib6kdFiehIkVsludszOAf4Qxv0zae5zcdBx1dsFjGyLexTD_cwmwCX4HPp2VYPFJz0XWY_BP-ASxUPSI98-Lfx8GZ7AtFDyXAukKXVg9Jrj-39fo8dfPh83vant_-2fzfVsZRvpc9dJSIYUcCDPM2r5jDTdd34re8kYKVkYmKAhqh450Led24LJr-MC1poLbdo1uztw5hr9HSFlNLhkYR-0hHJOinIhWlpOw961MMC5o2Vqs385WE0NKEayao5t0fFaUqCUNdVBv01BLGopwVdIoiLszAsrvT66oyTjwBnYugslqF9zHYa_Wa6C3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464561964</pqid></control><display><type>article</type><title>Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xiuliang ; Cheng, Ping</creator><creatorcontrib>Liu, Xiuliang ; Cheng, Ping</creatorcontrib><description>Using the improved double distribution function (DDF) thermal Lattice Boltzmann method (LBM), dropwise condensation of dry saturated vapor at a cold spot on vertical hydrophobic flat plates under gravity effects are simulated numerically for the first time. Dynamic behaviors of periodic formation of 3D condensing droplets on a 2D cold spot at a constant subcooled temperature, and their subsequent growth, and movement on hydrophobic surfaces are studied. The size of detached droplet on hydrophobic surfaces with different wettabilities under various gravity forces are simulated, and the results are found in good agreement with existing analytical predictions. The induced transient velocity and temperature fields and the variation of dropwise condensation heat flux with time at the cold spot on hydrophobic surfaces are analyzed. It is found that both the period of droplet condensation and its maximum heat transfer rates decrease as the contact angle of the surface is increased.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2013.05.042</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Condensation ; Condensing ; Droplet movement ; Droplets ; Dropwise condensation ; Flat plates ; Gravitation ; Heat transfer ; Lattice Boltzmann method ; Lattices ; Mathematical models ; Simulation</subject><ispartof>International journal of heat and mass transfer, 2013-09, Vol.64, p.1041-1052</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-89f16969b04c4ff87425c78368f52964783461e61fb707355fb59725b5aa165f3</citedby><cites>FETCH-LOGICAL-c408t-89f16969b04c4ff87425c78368f52964783461e61fb707355fb59725b5aa165f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931013004328$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, Xiuliang</creatorcontrib><creatorcontrib>Cheng, Ping</creatorcontrib><title>Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates</title><title>International journal of heat and mass transfer</title><description>Using the improved double distribution function (DDF) thermal Lattice Boltzmann method (LBM), dropwise condensation of dry saturated vapor at a cold spot on vertical hydrophobic flat plates under gravity effects are simulated numerically for the first time. Dynamic behaviors of periodic formation of 3D condensing droplets on a 2D cold spot at a constant subcooled temperature, and their subsequent growth, and movement on hydrophobic surfaces are studied. The size of detached droplet on hydrophobic surfaces with different wettabilities under various gravity forces are simulated, and the results are found in good agreement with existing analytical predictions. The induced transient velocity and temperature fields and the variation of dropwise condensation heat flux with time at the cold spot on hydrophobic surfaces are analyzed. It is found that both the period of droplet condensation and its maximum heat transfer rates decrease as the contact angle of the surface is increased.</description><subject>Condensation</subject><subject>Condensing</subject><subject>Droplet movement</subject><subject>Droplets</subject><subject>Dropwise condensation</subject><subject>Flat plates</subject><subject>Gravitation</subject><subject>Heat transfer</subject><subject>Lattice Boltzmann method</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Simulation</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv3CAQhVHVSNlu8h845mIXbMDm1nbVpo1WyiU5I8wOWVY2uMBulfz6YG1vOSSXmUHv6RsxD6EbSmpKqPh6qN1hDzpPOqUctU8WYt0Q2taE14Q1n9CK9p2sGtrLz2hFCO0q2VJyib6kdFiehIkVsludszOAf4Qxv0zae5zcdBx1dsFjGyLexTD_cwmwCX4HPp2VYPFJz0XWY_BP-ASxUPSI98-Lfx8GZ7AtFDyXAukKXVg9Jrj-39fo8dfPh83vant_-2fzfVsZRvpc9dJSIYUcCDPM2r5jDTdd34re8kYKVkYmKAhqh450Led24LJr-MC1poLbdo1uztw5hr9HSFlNLhkYR-0hHJOinIhWlpOw961MMC5o2Vqs385WE0NKEayao5t0fFaUqCUNdVBv01BLGopwVdIoiLszAsrvT66oyTjwBnYugslqF9zHYa_Wa6C3</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Liu, Xiuliang</creator><creator>Cheng, Ping</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates</title><author>Liu, Xiuliang ; Cheng, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-89f16969b04c4ff87425c78368f52964783461e61fb707355fb59725b5aa165f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensation</topic><topic>Condensing</topic><topic>Droplet movement</topic><topic>Droplets</topic><topic>Dropwise condensation</topic><topic>Flat plates</topic><topic>Gravitation</topic><topic>Heat transfer</topic><topic>Lattice Boltzmann method</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiuliang</creatorcontrib><creatorcontrib>Cheng, Ping</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiuliang</au><au>Cheng, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>64</volume><spage>1041</spage><epage>1052</epage><pages>1041-1052</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>Using the improved double distribution function (DDF) thermal Lattice Boltzmann method (LBM), dropwise condensation of dry saturated vapor at a cold spot on vertical hydrophobic flat plates under gravity effects are simulated numerically for the first time. Dynamic behaviors of periodic formation of 3D condensing droplets on a 2D cold spot at a constant subcooled temperature, and their subsequent growth, and movement on hydrophobic surfaces are studied. The size of detached droplet on hydrophobic surfaces with different wettabilities under various gravity forces are simulated, and the results are found in good agreement with existing analytical predictions. The induced transient velocity and temperature fields and the variation of dropwise condensation heat flux with time at the cold spot on hydrophobic surfaces are analyzed. It is found that both the period of droplet condensation and its maximum heat transfer rates decrease as the contact angle of the surface is increased.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2013.05.042</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2013-09, Vol.64, p.1041-1052 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506391894 |
source | Elsevier ScienceDirect Journals |
subjects | Condensation Condensing Droplet movement Droplets Dropwise condensation Flat plates Gravitation Heat transfer Lattice Boltzmann method Lattices Mathematical models Simulation |
title | Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20simulation%20for%20dropwise%20condensation%20of%20vapor%20along%20vertical%20hydrophobic%20flat%20plates&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Liu,%20Xiuliang&rft.date=2013-09-01&rft.volume=64&rft.spage=1041&rft.epage=1052&rft.pages=1041-1052&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2013.05.042&rft_dat=%3Cproquest_cross%3E1464561964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464561964&rft_id=info:pmid/&rft_els_id=S0017931013004328&rfr_iscdi=true |