Automatic diagnosis method for structural fault of rotating machinery based on distinctive frequency components and support vector machines under varied operating conditions

This paper presents a new, intelligent diagnostic method for identifying structural faults in rotating machinery based on distinctive frequency components (DFCs) and support vector machines (SVMs) under varied operating conditions. This method consists of three stages. First, when investigating and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2013-09, Vol.116, p.326-335
Hauptverfasser: Xue, Hongtao, Wang, Huaqing, Chen, Peng, Li, Ke, Song, Liuyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue
container_start_page 326
container_title Neurocomputing (Amsterdam)
container_volume 116
creator Xue, Hongtao
Wang, Huaqing
Chen, Peng
Li, Ke
Song, Liuyang
description This paper presents a new, intelligent diagnostic method for identifying structural faults in rotating machinery based on distinctive frequency components (DFCs) and support vector machines (SVMs) under varied operating conditions. This method consists of three stages. First, when investigating and comparing the spectrum feature of structural faults in the most salient frequency band, the DFCs can be detected and extracted. Second, when analyzing the common DFCs from various operating conditions, the DFCs are normalized on the universal standard to reduce the difference. Then, the optimal DFC area of any state under various operating conditions can be detected using probability theory. Finally, the optimal DFCs are input into the SVMs to detect faults and sequentially identify fault types from rotating machinery. The proposed method has been applied to detect structural faults from rotating machinery, and the efficiency of the method has been verified using practical examples.
doi_str_mv 10.1016/j.neucom.2012.02.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506391606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231212007217</els_id><sourcerecordid>1506391606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-1f987367f53e342242e3aca5a28723d7521a932d8c12e4a3d70c7c9797388ef3</originalsourceid><addsrcrecordid>eNp9kcuKHCEUhiUkkE4nb5CFy2yq46Uu1iYwDLnBQDazF6PHGZsqrXi0oR8q7xibmnXgoKD-3_H8PyEfOTtxxsfP51OEatN6EoyLE2vVq1fkwNUkOiXU-Joc2CyGTkgu3pJ3iGfG-MTFfCB_72pJqynBUhfMU0wYkK5QnpOjPmWKJVdbajYL9aYuhSZPcypNEJ_oauxziJCv9LdBcDTFBsF2ZUu4APUZ_lSI9krb37YUIRakJjqKddtSLvQCtrQeLxikNTrI9GJyuME2yHsbm6ILJaSI78kbbxaEDy_7kTx--_p4_6N7-PX95_3dQ2d7NpSO-1lNcpz8IEH2QvQCpLFmMKI5It00CG5mKZyyXEBv2gmzk52neZJKgZdH8mnHbjm1CbDoNaCFZTERUkXNBzbKmY9tPZJ-f2pzQszg9ZbDavJVc6Zv4eiz3sPRt3A0a9WrJvuyy6BNcQmQNdrQrAIXcjNFuxT-D_gHR4Cfsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506391606</pqid></control><display><type>article</type><title>Automatic diagnosis method for structural fault of rotating machinery based on distinctive frequency components and support vector machines under varied operating conditions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xue, Hongtao ; Wang, Huaqing ; Chen, Peng ; Li, Ke ; Song, Liuyang</creator><creatorcontrib>Xue, Hongtao ; Wang, Huaqing ; Chen, Peng ; Li, Ke ; Song, Liuyang</creatorcontrib><description>This paper presents a new, intelligent diagnostic method for identifying structural faults in rotating machinery based on distinctive frequency components (DFCs) and support vector machines (SVMs) under varied operating conditions. This method consists of three stages. First, when investigating and comparing the spectrum feature of structural faults in the most salient frequency band, the DFCs can be detected and extracted. Second, when analyzing the common DFCs from various operating conditions, the DFCs are normalized on the universal standard to reduce the difference. Then, the optimal DFC area of any state under various operating conditions can be detected using probability theory. Finally, the optimal DFCs are input into the SVMs to detect faults and sequentially identify fault types from rotating machinery. The proposed method has been applied to detect structural faults from rotating machinery, and the efficiency of the method has been verified using practical examples.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2012.02.048</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Diagnostic systems ; Distinctive frequency component ; Sequential diagnosis ; Structural fault ; Support vector machine</subject><ispartof>Neurocomputing (Amsterdam), 2013-09, Vol.116, p.326-335</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-1f987367f53e342242e3aca5a28723d7521a932d8c12e4a3d70c7c9797388ef3</citedby><cites>FETCH-LOGICAL-c405t-1f987367f53e342242e3aca5a28723d7521a932d8c12e4a3d70c7c9797388ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2012.02.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xue, Hongtao</creatorcontrib><creatorcontrib>Wang, Huaqing</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Song, Liuyang</creatorcontrib><title>Automatic diagnosis method for structural fault of rotating machinery based on distinctive frequency components and support vector machines under varied operating conditions</title><title>Neurocomputing (Amsterdam)</title><description>This paper presents a new, intelligent diagnostic method for identifying structural faults in rotating machinery based on distinctive frequency components (DFCs) and support vector machines (SVMs) under varied operating conditions. This method consists of three stages. First, when investigating and comparing the spectrum feature of structural faults in the most salient frequency band, the DFCs can be detected and extracted. Second, when analyzing the common DFCs from various operating conditions, the DFCs are normalized on the universal standard to reduce the difference. Then, the optimal DFC area of any state under various operating conditions can be detected using probability theory. Finally, the optimal DFCs are input into the SVMs to detect faults and sequentially identify fault types from rotating machinery. The proposed method has been applied to detect structural faults from rotating machinery, and the efficiency of the method has been verified using practical examples.</description><subject>Diagnostic systems</subject><subject>Distinctive frequency component</subject><subject>Sequential diagnosis</subject><subject>Structural fault</subject><subject>Support vector machine</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kcuKHCEUhiUkkE4nb5CFy2yq46Uu1iYwDLnBQDazF6PHGZsqrXi0oR8q7xibmnXgoKD-3_H8PyEfOTtxxsfP51OEatN6EoyLE2vVq1fkwNUkOiXU-Joc2CyGTkgu3pJ3iGfG-MTFfCB_72pJqynBUhfMU0wYkK5QnpOjPmWKJVdbajYL9aYuhSZPcypNEJ_oauxziJCv9LdBcDTFBsF2ZUu4APUZ_lSI9krb37YUIRakJjqKddtSLvQCtrQeLxikNTrI9GJyuME2yHsbm6ILJaSI78kbbxaEDy_7kTx--_p4_6N7-PX95_3dQ2d7NpSO-1lNcpz8IEH2QvQCpLFmMKI5It00CG5mKZyyXEBv2gmzk52neZJKgZdH8mnHbjm1CbDoNaCFZTERUkXNBzbKmY9tPZJ-f2pzQszg9ZbDavJVc6Zv4eiz3sPRt3A0a9WrJvuyy6BNcQmQNdrQrAIXcjNFuxT-D_gHR4Cfsw</recordid><startdate>20130920</startdate><enddate>20130920</enddate><creator>Xue, Hongtao</creator><creator>Wang, Huaqing</creator><creator>Chen, Peng</creator><creator>Li, Ke</creator><creator>Song, Liuyang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130920</creationdate><title>Automatic diagnosis method for structural fault of rotating machinery based on distinctive frequency components and support vector machines under varied operating conditions</title><author>Xue, Hongtao ; Wang, Huaqing ; Chen, Peng ; Li, Ke ; Song, Liuyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-1f987367f53e342242e3aca5a28723d7521a932d8c12e4a3d70c7c9797388ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Diagnostic systems</topic><topic>Distinctive frequency component</topic><topic>Sequential diagnosis</topic><topic>Structural fault</topic><topic>Support vector machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Hongtao</creatorcontrib><creatorcontrib>Wang, Huaqing</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Song, Liuyang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Hongtao</au><au>Wang, Huaqing</au><au>Chen, Peng</au><au>Li, Ke</au><au>Song, Liuyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic diagnosis method for structural fault of rotating machinery based on distinctive frequency components and support vector machines under varied operating conditions</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2013-09-20</date><risdate>2013</risdate><volume>116</volume><spage>326</spage><epage>335</epage><pages>326-335</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This paper presents a new, intelligent diagnostic method for identifying structural faults in rotating machinery based on distinctive frequency components (DFCs) and support vector machines (SVMs) under varied operating conditions. This method consists of three stages. First, when investigating and comparing the spectrum feature of structural faults in the most salient frequency band, the DFCs can be detected and extracted. Second, when analyzing the common DFCs from various operating conditions, the DFCs are normalized on the universal standard to reduce the difference. Then, the optimal DFC area of any state under various operating conditions can be detected using probability theory. Finally, the optimal DFCs are input into the SVMs to detect faults and sequentially identify fault types from rotating machinery. The proposed method has been applied to detect structural faults from rotating machinery, and the efficiency of the method has been verified using practical examples.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2012.02.048</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2013-09, Vol.116, p.326-335
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1506391606
source Access via ScienceDirect (Elsevier)
subjects Diagnostic systems
Distinctive frequency component
Sequential diagnosis
Structural fault
Support vector machine
title Automatic diagnosis method for structural fault of rotating machinery based on distinctive frequency components and support vector machines under varied operating conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20diagnosis%20method%20for%20structural%20fault%20of%20rotating%20machinery%20based%20on%20distinctive%20frequency%20components%20and%20support%20vector%20machines%20under%20varied%20operating%20conditions&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Xue,%20Hongtao&rft.date=2013-09-20&rft.volume=116&rft.spage=326&rft.epage=335&rft.pages=326-335&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2012.02.048&rft_dat=%3Cproquest_cross%3E1506391606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506391606&rft_id=info:pmid/&rft_els_id=S0925231212007217&rfr_iscdi=true