SURE-based optimization for adaptive sampling and reconstruction
We apply Stein's Unbiased Risk Estimator (SURE) to adaptive sampling and reconstruction to reduce noise in Monte Carlo rendering. SURE is a general unbiased estimator for mean squared error (MSE) in statistics. With SURE, we are able to estimate error for an arbitrary reconstruction kernel, ena...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2012-11, Vol.31 (6), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 31 |
creator | Li, Tzu-Mao Wu, Yu-Ting Chuang, Yung-Yu |
description | We apply Stein's Unbiased Risk Estimator (SURE) to adaptive sampling and reconstruction to reduce noise in Monte Carlo rendering. SURE is a general unbiased estimator for mean squared error (MSE) in statistics. With SURE, we are able to estimate error for an arbitrary reconstruction kernel, enabling us to use more effective kernels rather than being restricted to the symmetric ones used in previous work. It also allows us to allocate more samples to areas with higher estimated MSE. Adaptive sampling and reconstruction can therefore be processed within an optimization framework. We also propose an efficient and memory-friendly approach to reduce the impact of noisy geometry features where there is depth of field or motion blur. Experiments show that our method produces images with less noise and crisper details than previous methods. |
doi_str_mv | 10.1145/2366145.2366213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506389609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506389609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-59043b50130b4c77cd14a2a7adc1df6b69e79eb09875d759e1a3069e4682a90f3</originalsourceid><addsrcrecordid>eNotkM1LwzAYh4MoOKdnrz166fam-WpuypgfMBDUncPbJJVK29SkE_Svt2M9PfDj4Xd4CLmlsKKUi3XBpJy4OrKg7IwsqBAqV0yW52QBikEODOgluUrpCwAk53JB7t_3b9u8wuRdFoax6Zo_HJvQZ3WIGTqcph-fJeyGtuk_M-xdFr0NfRrjwR7Fa3JRY5v8zcwl2T9uPzbP-e716WXzsMstK-mYCw2cVQIog4pbpayjHAtU6Cx1tayk9kr7CnSphFNCe4oMppHLskANNVuSu9PvEMP3wafRdE2yvm2x9-GQDBUgWakl6Eldn1QbQ0rR12aITYfx11Awx1ZmbmXmVuwftPhbMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506389609</pqid></control><display><type>article</type><title>SURE-based optimization for adaptive sampling and reconstruction</title><source>ACM Digital Library Complete</source><creator>Li, Tzu-Mao ; Wu, Yu-Ting ; Chuang, Yung-Yu</creator><creatorcontrib>Li, Tzu-Mao ; Wu, Yu-Ting ; Chuang, Yung-Yu</creatorcontrib><description>We apply Stein's Unbiased Risk Estimator (SURE) to adaptive sampling and reconstruction to reduce noise in Monte Carlo rendering. SURE is a general unbiased estimator for mean squared error (MSE) in statistics. With SURE, we are able to estimate error for an arbitrary reconstruction kernel, enabling us to use more effective kernels rather than being restricted to the symmetric ones used in previous work. It also allows us to allocate more samples to areas with higher estimated MSE. Adaptive sampling and reconstruction can therefore be processed within an optimization framework. We also propose an efficient and memory-friendly approach to reduce the impact of noisy geometry features where there is depth of field or motion blur. Experiments show that our method produces images with less noise and crisper details than previous methods.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/2366145.2366213</identifier><language>eng</language><subject>Adaptive sampling</subject><ispartof>ACM transactions on graphics, 2012-11, Vol.31 (6), p.1-9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-59043b50130b4c77cd14a2a7adc1df6b69e79eb09875d759e1a3069e4682a90f3</citedby><cites>FETCH-LOGICAL-c381t-59043b50130b4c77cd14a2a7adc1df6b69e79eb09875d759e1a3069e4682a90f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Tzu-Mao</creatorcontrib><creatorcontrib>Wu, Yu-Ting</creatorcontrib><creatorcontrib>Chuang, Yung-Yu</creatorcontrib><title>SURE-based optimization for adaptive sampling and reconstruction</title><title>ACM transactions on graphics</title><description>We apply Stein's Unbiased Risk Estimator (SURE) to adaptive sampling and reconstruction to reduce noise in Monte Carlo rendering. SURE is a general unbiased estimator for mean squared error (MSE) in statistics. With SURE, we are able to estimate error for an arbitrary reconstruction kernel, enabling us to use more effective kernels rather than being restricted to the symmetric ones used in previous work. It also allows us to allocate more samples to areas with higher estimated MSE. Adaptive sampling and reconstruction can therefore be processed within an optimization framework. We also propose an efficient and memory-friendly approach to reduce the impact of noisy geometry features where there is depth of field or motion blur. Experiments show that our method produces images with less noise and crisper details than previous methods.</description><subject>Adaptive sampling</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkM1LwzAYh4MoOKdnrz166fam-WpuypgfMBDUncPbJJVK29SkE_Svt2M9PfDj4Xd4CLmlsKKUi3XBpJy4OrKg7IwsqBAqV0yW52QBikEODOgluUrpCwAk53JB7t_3b9u8wuRdFoax6Zo_HJvQZ3WIGTqcph-fJeyGtuk_M-xdFr0NfRrjwR7Fa3JRY5v8zcwl2T9uPzbP-e716WXzsMstK-mYCw2cVQIog4pbpayjHAtU6Cx1tayk9kr7CnSphFNCe4oMppHLskANNVuSu9PvEMP3wafRdE2yvm2x9-GQDBUgWakl6Eldn1QbQ0rR12aITYfx11Awx1ZmbmXmVuwftPhbMQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Li, Tzu-Mao</creator><creator>Wu, Yu-Ting</creator><creator>Chuang, Yung-Yu</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>SURE-based optimization for adaptive sampling and reconstruction</title><author>Li, Tzu-Mao ; Wu, Yu-Ting ; Chuang, Yung-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-59043b50130b4c77cd14a2a7adc1df6b69e79eb09875d759e1a3069e4682a90f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tzu-Mao</creatorcontrib><creatorcontrib>Wu, Yu-Ting</creatorcontrib><creatorcontrib>Chuang, Yung-Yu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tzu-Mao</au><au>Wu, Yu-Ting</au><au>Chuang, Yung-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SURE-based optimization for adaptive sampling and reconstruction</atitle><jtitle>ACM transactions on graphics</jtitle><date>2012-11</date><risdate>2012</risdate><volume>31</volume><issue>6</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>We apply Stein's Unbiased Risk Estimator (SURE) to adaptive sampling and reconstruction to reduce noise in Monte Carlo rendering. SURE is a general unbiased estimator for mean squared error (MSE) in statistics. With SURE, we are able to estimate error for an arbitrary reconstruction kernel, enabling us to use more effective kernels rather than being restricted to the symmetric ones used in previous work. It also allows us to allocate more samples to areas with higher estimated MSE. Adaptive sampling and reconstruction can therefore be processed within an optimization framework. We also propose an efficient and memory-friendly approach to reduce the impact of noisy geometry features where there is depth of field or motion blur. Experiments show that our method produces images with less noise and crisper details than previous methods.</abstract><doi>10.1145/2366145.2366213</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2012-11, Vol.31 (6), p.1-9 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506389609 |
source | ACM Digital Library Complete |
subjects | Adaptive sampling |
title | SURE-based optimization for adaptive sampling and reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SURE-based%20optimization%20for%20adaptive%20sampling%20and%20reconstruction&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Li,%20Tzu-Mao&rft.date=2012-11&rft.volume=31&rft.issue=6&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/2366145.2366213&rft_dat=%3Cproquest_cross%3E1506389609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506389609&rft_id=info:pmid/&rfr_iscdi=true |