SURE-based optimization for adaptive sampling and reconstruction

We apply Stein's Unbiased Risk Estimator (SURE) to adaptive sampling and reconstruction to reduce noise in Monte Carlo rendering. SURE is a general unbiased estimator for mean squared error (MSE) in statistics. With SURE, we are able to estimate error for an arbitrary reconstruction kernel, ena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2012-11, Vol.31 (6), p.1-9
Hauptverfasser: Li, Tzu-Mao, Wu, Yu-Ting, Chuang, Yung-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 6
container_start_page 1
container_title ACM transactions on graphics
container_volume 31
creator Li, Tzu-Mao
Wu, Yu-Ting
Chuang, Yung-Yu
description We apply Stein's Unbiased Risk Estimator (SURE) to adaptive sampling and reconstruction to reduce noise in Monte Carlo rendering. SURE is a general unbiased estimator for mean squared error (MSE) in statistics. With SURE, we are able to estimate error for an arbitrary reconstruction kernel, enabling us to use more effective kernels rather than being restricted to the symmetric ones used in previous work. It also allows us to allocate more samples to areas with higher estimated MSE. Adaptive sampling and reconstruction can therefore be processed within an optimization framework. We also propose an efficient and memory-friendly approach to reduce the impact of noisy geometry features where there is depth of field or motion blur. Experiments show that our method produces images with less noise and crisper details than previous methods.
doi_str_mv 10.1145/2366145.2366213
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506389609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506389609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-59043b50130b4c77cd14a2a7adc1df6b69e79eb09875d759e1a3069e4682a90f3</originalsourceid><addsrcrecordid>eNotkM1LwzAYh4MoOKdnrz166fam-WpuypgfMBDUncPbJJVK29SkE_Svt2M9PfDj4Xd4CLmlsKKUi3XBpJy4OrKg7IwsqBAqV0yW52QBikEODOgluUrpCwAk53JB7t_3b9u8wuRdFoax6Zo_HJvQZ3WIGTqcph-fJeyGtuk_M-xdFr0NfRrjwR7Fa3JRY5v8zcwl2T9uPzbP-e716WXzsMstK-mYCw2cVQIog4pbpayjHAtU6Cx1tayk9kr7CnSphFNCe4oMppHLskANNVuSu9PvEMP3wafRdE2yvm2x9-GQDBUgWakl6Eldn1QbQ0rR12aITYfx11Awx1ZmbmXmVuwftPhbMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506389609</pqid></control><display><type>article</type><title>SURE-based optimization for adaptive sampling and reconstruction</title><source>ACM Digital Library Complete</source><creator>Li, Tzu-Mao ; Wu, Yu-Ting ; Chuang, Yung-Yu</creator><creatorcontrib>Li, Tzu-Mao ; Wu, Yu-Ting ; Chuang, Yung-Yu</creatorcontrib><description>We apply Stein's Unbiased Risk Estimator (SURE) to adaptive sampling and reconstruction to reduce noise in Monte Carlo rendering. SURE is a general unbiased estimator for mean squared error (MSE) in statistics. With SURE, we are able to estimate error for an arbitrary reconstruction kernel, enabling us to use more effective kernels rather than being restricted to the symmetric ones used in previous work. It also allows us to allocate more samples to areas with higher estimated MSE. Adaptive sampling and reconstruction can therefore be processed within an optimization framework. We also propose an efficient and memory-friendly approach to reduce the impact of noisy geometry features where there is depth of field or motion blur. Experiments show that our method produces images with less noise and crisper details than previous methods.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/2366145.2366213</identifier><language>eng</language><subject>Adaptive sampling</subject><ispartof>ACM transactions on graphics, 2012-11, Vol.31 (6), p.1-9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-59043b50130b4c77cd14a2a7adc1df6b69e79eb09875d759e1a3069e4682a90f3</citedby><cites>FETCH-LOGICAL-c381t-59043b50130b4c77cd14a2a7adc1df6b69e79eb09875d759e1a3069e4682a90f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Tzu-Mao</creatorcontrib><creatorcontrib>Wu, Yu-Ting</creatorcontrib><creatorcontrib>Chuang, Yung-Yu</creatorcontrib><title>SURE-based optimization for adaptive sampling and reconstruction</title><title>ACM transactions on graphics</title><description>We apply Stein's Unbiased Risk Estimator (SURE) to adaptive sampling and reconstruction to reduce noise in Monte Carlo rendering. SURE is a general unbiased estimator for mean squared error (MSE) in statistics. With SURE, we are able to estimate error for an arbitrary reconstruction kernel, enabling us to use more effective kernels rather than being restricted to the symmetric ones used in previous work. It also allows us to allocate more samples to areas with higher estimated MSE. Adaptive sampling and reconstruction can therefore be processed within an optimization framework. We also propose an efficient and memory-friendly approach to reduce the impact of noisy geometry features where there is depth of field or motion blur. Experiments show that our method produces images with less noise and crisper details than previous methods.</description><subject>Adaptive sampling</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkM1LwzAYh4MoOKdnrz166fam-WpuypgfMBDUncPbJJVK29SkE_Svt2M9PfDj4Xd4CLmlsKKUi3XBpJy4OrKg7IwsqBAqV0yW52QBikEODOgluUrpCwAk53JB7t_3b9u8wuRdFoax6Zo_HJvQZ3WIGTqcph-fJeyGtuk_M-xdFr0NfRrjwR7Fa3JRY5v8zcwl2T9uPzbP-e716WXzsMstK-mYCw2cVQIog4pbpayjHAtU6Cx1tayk9kr7CnSphFNCe4oMppHLskANNVuSu9PvEMP3wafRdE2yvm2x9-GQDBUgWakl6Eldn1QbQ0rR12aITYfx11Awx1ZmbmXmVuwftPhbMQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Li, Tzu-Mao</creator><creator>Wu, Yu-Ting</creator><creator>Chuang, Yung-Yu</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>SURE-based optimization for adaptive sampling and reconstruction</title><author>Li, Tzu-Mao ; Wu, Yu-Ting ; Chuang, Yung-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-59043b50130b4c77cd14a2a7adc1df6b69e79eb09875d759e1a3069e4682a90f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tzu-Mao</creatorcontrib><creatorcontrib>Wu, Yu-Ting</creatorcontrib><creatorcontrib>Chuang, Yung-Yu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tzu-Mao</au><au>Wu, Yu-Ting</au><au>Chuang, Yung-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SURE-based optimization for adaptive sampling and reconstruction</atitle><jtitle>ACM transactions on graphics</jtitle><date>2012-11</date><risdate>2012</risdate><volume>31</volume><issue>6</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>We apply Stein's Unbiased Risk Estimator (SURE) to adaptive sampling and reconstruction to reduce noise in Monte Carlo rendering. SURE is a general unbiased estimator for mean squared error (MSE) in statistics. With SURE, we are able to estimate error for an arbitrary reconstruction kernel, enabling us to use more effective kernels rather than being restricted to the symmetric ones used in previous work. It also allows us to allocate more samples to areas with higher estimated MSE. Adaptive sampling and reconstruction can therefore be processed within an optimization framework. We also propose an efficient and memory-friendly approach to reduce the impact of noisy geometry features where there is depth of field or motion blur. Experiments show that our method produces images with less noise and crisper details than previous methods.</abstract><doi>10.1145/2366145.2366213</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2012-11, Vol.31 (6), p.1-9
issn 0730-0301
1557-7368
language eng
recordid cdi_proquest_miscellaneous_1506389609
source ACM Digital Library Complete
subjects Adaptive sampling
title SURE-based optimization for adaptive sampling and reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SURE-based%20optimization%20for%20adaptive%20sampling%20and%20reconstruction&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Li,%20Tzu-Mao&rft.date=2012-11&rft.volume=31&rft.issue=6&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/2366145.2366213&rft_dat=%3Cproquest_cross%3E1506389609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506389609&rft_id=info:pmid/&rfr_iscdi=true