Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal wave equations
In this paper we study the global existence and blow-up of solutions for a general class of nonlocal nonlinear wave equations with power-type nonlinearities, utt−Luxx=B(−|u|p−1u)xx,(p>1), where the nonlocality enters through two pseudo-differential operators L and B. We establish thresholds for g...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2014-01, Vol.95, p.313-322 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | |
container_start_page | 313 |
container_title | Nonlinear analysis |
container_volume | 95 |
creator | Erbay, H.A. Erbay, S. Erkip, A. |
description | In this paper we study the global existence and blow-up of solutions for a general class of nonlocal nonlinear wave equations with power-type nonlinearities, utt−Luxx=B(−|u|p−1u)xx,(p>1), where the nonlocality enters through two pseudo-differential operators L and B. We establish thresholds for global existence versus blow-up using the potential well method which relies essentially on the ideas suggested by Payne and Sattinger. Our results improve the global existence and blow-up results given in the literature for the present class of nonlocal nonlinear wave equations and cover those given for many well-known nonlinear dispersive wave equations such as the so-called double-dispersion equation and the traditional Boussinesq-type equations, as special cases. |
doi_str_mv | 10.1016/j.na.2013.09.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X13003192</els_id><sourcerecordid>1506385865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-e571e91601025ec7d551c44486db9d7310102f41fcd8faf8890d4b6bde96d90e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM3pkSbCT2EnYUMWXhMRSJDbLsS_gYuzWl7Tw70lVVqZXp3vek-4h5JKznDMur1d50HnBeJmzNp_iiMx4U5eZKLg4JjNWyiITlXw7JWeIK8YYr0s5I5_LjwT4Eb1F2sdE333stKfw7XCAYIDqYGnn4y4b19QFquk7BEgTYrxGpLGnNo6d_6HW4RoSui3QEIOPZmJ2eppgM-rBxYDn5KTXHuHiL-fk9f5uuXjMnl8enha3z5kpZTtkIGoOLZeMs0KAqa0Q3FRV1UjbtbYu-X7RV7w3tul13zQts1UnOwuttC2Dck6uDnfXKW5GwEF9OTTgvQ4QR1RcMFk2opFiQtkBNSkiJujVOrkvnX4UZ2rvVa1U0GrvVbFWTTFVbg4VmF7YOkgKjdursi6BGZSN7v_yL3crgN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506385865</pqid></control><display><type>article</type><title>Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal wave equations</title><source>Elsevier ScienceDirect Journals</source><creator>Erbay, H.A. ; Erbay, S. ; Erkip, A.</creator><creatorcontrib>Erbay, H.A. ; Erbay, S. ; Erkip, A.</creatorcontrib><description>In this paper we study the global existence and blow-up of solutions for a general class of nonlocal nonlinear wave equations with power-type nonlinearities, utt−Luxx=B(−|u|p−1u)xx,(p>1), where the nonlocality enters through two pseudo-differential operators L and B. We establish thresholds for global existence versus blow-up using the potential well method which relies essentially on the ideas suggested by Payne and Sattinger. Our results improve the global existence and blow-up results given in the literature for the present class of nonlocal nonlinear wave equations and cover those given for many well-known nonlinear dispersive wave equations such as the so-called double-dispersion equation and the traditional Boussinesq-type equations, as special cases.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2013.09.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Blow-up ; Boussinesq equation ; Double dispersion equation ; Global existence ; Mathematical analysis ; Nonlocal Cauchy problem ; Potential well</subject><ispartof>Nonlinear analysis, 2014-01, Vol.95, p.313-322</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-e571e91601025ec7d551c44486db9d7310102f41fcd8faf8890d4b6bde96d90e3</citedby><cites>FETCH-LOGICAL-c369t-e571e91601025ec7d551c44486db9d7310102f41fcd8faf8890d4b6bde96d90e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2013.09.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Erbay, H.A.</creatorcontrib><creatorcontrib>Erbay, S.</creatorcontrib><creatorcontrib>Erkip, A.</creatorcontrib><title>Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal wave equations</title><title>Nonlinear analysis</title><description>In this paper we study the global existence and blow-up of solutions for a general class of nonlocal nonlinear wave equations with power-type nonlinearities, utt−Luxx=B(−|u|p−1u)xx,(p>1), where the nonlocality enters through two pseudo-differential operators L and B. We establish thresholds for global existence versus blow-up using the potential well method which relies essentially on the ideas suggested by Payne and Sattinger. Our results improve the global existence and blow-up results given in the literature for the present class of nonlocal nonlinear wave equations and cover those given for many well-known nonlinear dispersive wave equations such as the so-called double-dispersion equation and the traditional Boussinesq-type equations, as special cases.</description><subject>Blow-up</subject><subject>Boussinesq equation</subject><subject>Double dispersion equation</subject><subject>Global existence</subject><subject>Mathematical analysis</subject><subject>Nonlocal Cauchy problem</subject><subject>Potential well</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM3pkSbCT2EnYUMWXhMRSJDbLsS_gYuzWl7Tw70lVVqZXp3vek-4h5JKznDMur1d50HnBeJmzNp_iiMx4U5eZKLg4JjNWyiITlXw7JWeIK8YYr0s5I5_LjwT4Eb1F2sdE333stKfw7XCAYIDqYGnn4y4b19QFquk7BEgTYrxGpLGnNo6d_6HW4RoSui3QEIOPZmJ2eppgM-rBxYDn5KTXHuHiL-fk9f5uuXjMnl8enha3z5kpZTtkIGoOLZeMs0KAqa0Q3FRV1UjbtbYu-X7RV7w3tul13zQts1UnOwuttC2Dck6uDnfXKW5GwEF9OTTgvQ4QR1RcMFk2opFiQtkBNSkiJujVOrkvnX4UZ2rvVa1U0GrvVbFWTTFVbg4VmF7YOkgKjdursi6BGZSN7v_yL3crgN4</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Erbay, H.A.</creator><creator>Erbay, S.</creator><creator>Erkip, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal wave equations</title><author>Erbay, H.A. ; Erbay, S. ; Erkip, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-e571e91601025ec7d551c44486db9d7310102f41fcd8faf8890d4b6bde96d90e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blow-up</topic><topic>Boussinesq equation</topic><topic>Double dispersion equation</topic><topic>Global existence</topic><topic>Mathematical analysis</topic><topic>Nonlocal Cauchy problem</topic><topic>Potential well</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erbay, H.A.</creatorcontrib><creatorcontrib>Erbay, S.</creatorcontrib><creatorcontrib>Erkip, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erbay, H.A.</au><au>Erbay, S.</au><au>Erkip, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal wave equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2014-01</date><risdate>2014</risdate><volume>95</volume><spage>313</spage><epage>322</epage><pages>313-322</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper we study the global existence and blow-up of solutions for a general class of nonlocal nonlinear wave equations with power-type nonlinearities, utt−Luxx=B(−|u|p−1u)xx,(p>1), where the nonlocality enters through two pseudo-differential operators L and B. We establish thresholds for global existence versus blow-up using the potential well method which relies essentially on the ideas suggested by Payne and Sattinger. Our results improve the global existence and blow-up results given in the literature for the present class of nonlocal nonlinear wave equations and cover those given for many well-known nonlinear dispersive wave equations such as the so-called double-dispersion equation and the traditional Boussinesq-type equations, as special cases.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2013.09.013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2014-01, Vol.95, p.313-322 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506385865 |
source | Elsevier ScienceDirect Journals |
subjects | Blow-up Boussinesq equation Double dispersion equation Global existence Mathematical analysis Nonlocal Cauchy problem Potential well |
title | Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal wave equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thresholds%20for%20global%20existence%20and%20blow-up%20in%20a%20general%20class%20of%20doubly%20dispersive%20nonlocal%20wave%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Erbay,%20H.A.&rft.date=2014-01&rft.volume=95&rft.spage=313&rft.epage=322&rft.pages=313-322&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2013.09.013&rft_dat=%3Cproquest_cross%3E1506385865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506385865&rft_id=info:pmid/&rft_els_id=S0362546X13003192&rfr_iscdi=true |