Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS

We study global bifurcation diagrams and exact multiplicity of positive solutions for the one-dimensional prescribed mean curvature problem arising in MEMS {−(u′(x)1+(u′(x))2)′=λ(1−u)p,u

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2013-09, Vol.89, p.284-298
Hauptverfasser: Cheng, Yan-Hsiou, Hung, Kuo-Chih, Wang, Shin-Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue
container_start_page 284
container_title Nonlinear analysis
container_volume 89
creator Cheng, Yan-Hsiou
Hung, Kuo-Chih
Wang, Shin-Hwa
description We study global bifurcation diagrams and exact multiplicity of positive solutions for the one-dimensional prescribed mean curvature problem arising in MEMS {−(u′(x)1+(u′(x))2)′=λ(1−u)p,u
doi_str_mv 10.1016/j.na.2013.04.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X13001545</els_id><sourcerecordid>1506385596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-ba11fb89ee128091c91a6d1aada352e738bf129d4cf0dde1e0d384dd0f1252073</originalsourceid><addsrcrecordid>eNqFkUGL1EAQhYMoOK7ePfbRS2JVJ51kvMmyrsIuHlTw1lS6K0sNSffYnQzuv_Anm3G8iqeCV-97VPGK4jVChYDt20MVqNKAdQVNBdg_KXbYd3VpNJqnxQ7qVpemab8_L17kfAAA7Op2V_y6neJAkxpkXJOjRWJQXugh0ZwVBa_4J7lFzeu0yHESJ8ujiqM6xiyLnFjlOK1nKKsxJkUqBi69zBzyJm65x8TZJRnYq5kpKLemEy1r4m0Th4lnRUmyhAclQd3f3H95WTwbacr86u-8Kr59uPl6_bG8-3z76fr9Xeka3S7lQIjj0O-ZUfewR7dHaj0SeaqN5q7uhxH13jduBO8ZGXzdN97DphoNXX1VvLnkbnf8WDkvdpbseJoocFyzRQNt3Ruzb_9vbTpjtNbYb1a4WF2KOSce7THJTOnRIthzT_ZgA9lzTxYaC3-QdxeEt29PwslmJxwce0nsFuuj_Bv-DfAinXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475522218</pqid></control><display><type>article</type><title>Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cheng, Yan-Hsiou ; Hung, Kuo-Chih ; Wang, Shin-Hwa</creator><creatorcontrib>Cheng, Yan-Hsiou ; Hung, Kuo-Chih ; Wang, Shin-Hwa</creatorcontrib><description><![CDATA[We study global bifurcation diagrams and exact multiplicity of positive solutions for the one-dimensional prescribed mean curvature problem arising in MEMS {−(u′(x)1+(u′(x))2)′=λ(1−u)p,u<1,−L<x<L,u(−L)=u(L)=0, where λ>0 is a bifurcation parameter, and p,L>0 are two evolution parameters. We determine the exact number of positive solutions by the values of p,L and λ. Moreover, for p≥1, the bifurcation diagram undergoes fold and splitting bifurcations. While for 0<p<1, the bifurcation diagram undergoes fold, splitting and segment-shrinking bifurcations. Our results extend and improve those of Brubaker and Pelesko [N.D. Brubaker, J.A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal. 75 (2012) 5086–5102] and Pan and Xing [H. Pan, R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to a MEMS model, Nonlinear Anal. RWA 13 (2012) 2432–2445] by generalizing the nonlinearity (1−u)−2 to (1−u)−p with general p∈(1,∞). We also answer an open question raised by Brubaker and Pelesko on the extension of (global) bifurcation diagram results to general p>0. Concerning this open question, we find and prove that global bifurcation diagrams for 0<p<1 are different to and more complicated than those for p≥1.]]></description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2013.04.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bifurcations ; Exact multiplicity ; Global bifurcation diagram ; MEMS ; Positive solution ; Prescribed mean curvature problem</subject><ispartof>Nonlinear analysis, 2013-09, Vol.89, p.284-298</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-ba11fb89ee128091c91a6d1aada352e738bf129d4cf0dde1e0d384dd0f1252073</citedby><cites>FETCH-LOGICAL-c426t-ba11fb89ee128091c91a6d1aada352e738bf129d4cf0dde1e0d384dd0f1252073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2013.04.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cheng, Yan-Hsiou</creatorcontrib><creatorcontrib>Hung, Kuo-Chih</creatorcontrib><creatorcontrib>Wang, Shin-Hwa</creatorcontrib><title>Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS</title><title>Nonlinear analysis</title><description><![CDATA[We study global bifurcation diagrams and exact multiplicity of positive solutions for the one-dimensional prescribed mean curvature problem arising in MEMS {−(u′(x)1+(u′(x))2)′=λ(1−u)p,u<1,−L<x<L,u(−L)=u(L)=0, where λ>0 is a bifurcation parameter, and p,L>0 are two evolution parameters. We determine the exact number of positive solutions by the values of p,L and λ. Moreover, for p≥1, the bifurcation diagram undergoes fold and splitting bifurcations. While for 0<p<1, the bifurcation diagram undergoes fold, splitting and segment-shrinking bifurcations. Our results extend and improve those of Brubaker and Pelesko [N.D. Brubaker, J.A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal. 75 (2012) 5086–5102] and Pan and Xing [H. Pan, R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to a MEMS model, Nonlinear Anal. RWA 13 (2012) 2432–2445] by generalizing the nonlinearity (1−u)−2 to (1−u)−p with general p∈(1,∞). We also answer an open question raised by Brubaker and Pelesko on the extension of (global) bifurcation diagram results to general p>0. Concerning this open question, we find and prove that global bifurcation diagrams for 0<p<1 are different to and more complicated than those for p≥1.]]></description><subject>Bifurcations</subject><subject>Exact multiplicity</subject><subject>Global bifurcation diagram</subject><subject>MEMS</subject><subject>Positive solution</subject><subject>Prescribed mean curvature problem</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUGL1EAQhYMoOK7ePfbRS2JVJ51kvMmyrsIuHlTw1lS6K0sNSffYnQzuv_Anm3G8iqeCV-97VPGK4jVChYDt20MVqNKAdQVNBdg_KXbYd3VpNJqnxQ7qVpemab8_L17kfAAA7Op2V_y6neJAkxpkXJOjRWJQXugh0ZwVBa_4J7lFzeu0yHESJ8ujiqM6xiyLnFjlOK1nKKsxJkUqBi69zBzyJm65x8TZJRnYq5kpKLemEy1r4m0Th4lnRUmyhAclQd3f3H95WTwbacr86u-8Kr59uPl6_bG8-3z76fr9Xeka3S7lQIjj0O-ZUfewR7dHaj0SeaqN5q7uhxH13jduBO8ZGXzdN97DphoNXX1VvLnkbnf8WDkvdpbseJoocFyzRQNt3Ruzb_9vbTpjtNbYb1a4WF2KOSce7THJTOnRIthzT_ZgA9lzTxYaC3-QdxeEt29PwslmJxwce0nsFuuj_Bv-DfAinXU</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Cheng, Yan-Hsiou</creator><creator>Hung, Kuo-Chih</creator><creator>Wang, Shin-Hwa</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS</title><author>Cheng, Yan-Hsiou ; Hung, Kuo-Chih ; Wang, Shin-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-ba11fb89ee128091c91a6d1aada352e738bf129d4cf0dde1e0d384dd0f1252073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bifurcations</topic><topic>Exact multiplicity</topic><topic>Global bifurcation diagram</topic><topic>MEMS</topic><topic>Positive solution</topic><topic>Prescribed mean curvature problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yan-Hsiou</creatorcontrib><creatorcontrib>Hung, Kuo-Chih</creatorcontrib><creatorcontrib>Wang, Shin-Hwa</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yan-Hsiou</au><au>Hung, Kuo-Chih</au><au>Wang, Shin-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS</atitle><jtitle>Nonlinear analysis</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>89</volume><spage>284</spage><epage>298</epage><pages>284-298</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract><![CDATA[We study global bifurcation diagrams and exact multiplicity of positive solutions for the one-dimensional prescribed mean curvature problem arising in MEMS {−(u′(x)1+(u′(x))2)′=λ(1−u)p,u<1,−L<x<L,u(−L)=u(L)=0, where λ>0 is a bifurcation parameter, and p,L>0 are two evolution parameters. We determine the exact number of positive solutions by the values of p,L and λ. Moreover, for p≥1, the bifurcation diagram undergoes fold and splitting bifurcations. While for 0<p<1, the bifurcation diagram undergoes fold, splitting and segment-shrinking bifurcations. Our results extend and improve those of Brubaker and Pelesko [N.D. Brubaker, J.A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal. 75 (2012) 5086–5102] and Pan and Xing [H. Pan, R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to a MEMS model, Nonlinear Anal. RWA 13 (2012) 2432–2445] by generalizing the nonlinearity (1−u)−2 to (1−u)−p with general p∈(1,∞). We also answer an open question raised by Brubaker and Pelesko on the extension of (global) bifurcation diagram results to general p>0. Concerning this open question, we find and prove that global bifurcation diagrams for 0<p<1 are different to and more complicated than those for p≥1.]]></abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2013.04.018</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2013-09, Vol.89, p.284-298
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1506385596
source Access via ScienceDirect (Elsevier)
subjects Bifurcations
Exact multiplicity
Global bifurcation diagram
MEMS
Positive solution
Prescribed mean curvature problem
title Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20bifurcation%20diagrams%20and%20exact%20multiplicity%20of%20positive%20solutions%20for%20a%20one-dimensional%20prescribed%20mean%20curvature%20problem%20arising%20in%20MEMS&rft.jtitle=Nonlinear%20analysis&rft.au=Cheng,%20Yan-Hsiou&rft.date=2013-09-01&rft.volume=89&rft.spage=284&rft.epage=298&rft.pages=284-298&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2013.04.018&rft_dat=%3Cproquest_cross%3E1506385596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475522218&rft_id=info:pmid/&rft_els_id=S0362546X13001545&rfr_iscdi=true