An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting
The continuing growth in size and complexity of electric power systems requires the development of applicable load forecasting models to estimate the future electrical energy demands accurately. This paper presents a novel load forecasting approach called genetic‐based adaptive neuro‐fuzzy inference...
Gespeichert in:
Veröffentlicht in: | International transactions in operational research 2014-03, Vol.21 (2), p.311-326 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | 2 |
container_start_page | 311 |
container_title | International transactions in operational research |
container_volume | 21 |
creator | Kazemi, S.M.R. Seied Hoseini, Mir Meisam Abbasian-Naghneh, S. Rahmati, Seyed Habib A. |
description | The continuing growth in size and complexity of electric power systems requires the development of applicable load forecasting models to estimate the future electrical energy demands accurately. This paper presents a novel load forecasting approach called genetic‐based adaptive neuro‐fuzzy inference system (GBANFIS) to construct short‐term load forecasting expert systems and controllers. At the first stage, all records of data are searched by a novel genetic algorithm (GA) to find the most suitable feature of inputs to construct the model. Then, determined inputs are fed into the adaptive neuro‐fuzzy inference system to evolve the initial knowledge‐base of the expert system. Finally, the initial knowledge‐base is searched by another robust GA to induce a better cooperation among the rules by rule weight derivation and rule selection mechanisms. We show the superiority and applicability of our approach by applying it to the Iranian monthly electrical energy demand problem and comparing it with the most frequently adopted approaches in this field. Results indicate that GBANFIS outperforms its rival approaches and is a promising tool for dealing with short‐term load forecasting problems. |
doi_str_mv | 10.1111/itor.12046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3188867141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4036-82541dd6452ca2b5c25ab21387dac267fdf4093c980781ee41f064dff12875f13</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK5e_AUNXkTImspXdx-Xwf2AwQUd8Rgy6cqYtScZk_Tq7K-3x1EPHqxLQdXzFsVDyEtg5zDX21BTPgfOpH5EFiBbRUXfq8dkwXrdU81APyXPSrljjIGCdkG2F7HB-zRONaRo84FubMGhsYPd13CPTcQpJ-qnh4dDE6LHjNFhUw6l4q7xKc_DiuMYthhrU76kXGnFvGvGZIfjHp0tNcTtc_LE27Hgi9_9jHy6fLdeXtPV7dXN8mJFnWRC044rCcOgpeLO8o1yXNkNB9G1g3Vct37wkvXC9R1rO0CU4JmWg_fAu1Z5EGfk9enuPqdvE5ZqdqG4-UMbMU3FgGJadErxI_rqH_QuTTnO3xmQPYBWPeiZenOiXE6lZPRmn8NuNmWAmaNzc3RufjmfYTjB38OIh_-Q5mZ9--FPhp4yYXb642_G5q9Gt6JV5vP7KyPUirHlx2uzFj8BqJqUNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1491165916</pqid></control><display><type>article</type><title>An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Kazemi, S.M.R. ; Seied Hoseini, Mir Meisam ; Abbasian-Naghneh, S. ; Rahmati, Seyed Habib A.</creator><creatorcontrib>Kazemi, S.M.R. ; Seied Hoseini, Mir Meisam ; Abbasian-Naghneh, S. ; Rahmati, Seyed Habib A.</creatorcontrib><description>The continuing growth in size and complexity of electric power systems requires the development of applicable load forecasting models to estimate the future electrical energy demands accurately. This paper presents a novel load forecasting approach called genetic‐based adaptive neuro‐fuzzy inference system (GBANFIS) to construct short‐term load forecasting expert systems and controllers. At the first stage, all records of data are searched by a novel genetic algorithm (GA) to find the most suitable feature of inputs to construct the model. Then, determined inputs are fed into the adaptive neuro‐fuzzy inference system to evolve the initial knowledge‐base of the expert system. Finally, the initial knowledge‐base is searched by another robust GA to induce a better cooperation among the rules by rule weight derivation and rule selection mechanisms. We show the superiority and applicability of our approach by applying it to the Iranian monthly electrical energy demand problem and comparing it with the most frequently adopted approaches in this field. Results indicate that GBANFIS outperforms its rival approaches and is a promising tool for dealing with short‐term load forecasting problems.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.12046</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>adaptive neuro-fuzzy inference system ; Adaptive systems ; Artificial neural networks ; Construction ; Demand ; Electric utilities ; electricity load ; feature selection ; Forecasting ; Forecasting techniques ; Fuzzy logic ; genetic algorithm ; Genetic algorithms ; Inference ; Operations research ; Studies</subject><ispartof>International transactions in operational research, 2014-03, Vol.21 (2), p.311-326</ispartof><rights>2013 The Authors. International Transactions in Operational Research © 2013 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA.</rights><rights>Copyright © 2014 International Federation of Operational Research Societies</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4036-82541dd6452ca2b5c25ab21387dac267fdf4093c980781ee41f064dff12875f13</citedby><cites>FETCH-LOGICAL-c4036-82541dd6452ca2b5c25ab21387dac267fdf4093c980781ee41f064dff12875f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fitor.12046$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fitor.12046$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kazemi, S.M.R.</creatorcontrib><creatorcontrib>Seied Hoseini, Mir Meisam</creatorcontrib><creatorcontrib>Abbasian-Naghneh, S.</creatorcontrib><creatorcontrib>Rahmati, Seyed Habib A.</creatorcontrib><title>An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting</title><title>International transactions in operational research</title><addtitle>Intl. Trans. in Op. Res</addtitle><description>The continuing growth in size and complexity of electric power systems requires the development of applicable load forecasting models to estimate the future electrical energy demands accurately. This paper presents a novel load forecasting approach called genetic‐based adaptive neuro‐fuzzy inference system (GBANFIS) to construct short‐term load forecasting expert systems and controllers. At the first stage, all records of data are searched by a novel genetic algorithm (GA) to find the most suitable feature of inputs to construct the model. Then, determined inputs are fed into the adaptive neuro‐fuzzy inference system to evolve the initial knowledge‐base of the expert system. Finally, the initial knowledge‐base is searched by another robust GA to induce a better cooperation among the rules by rule weight derivation and rule selection mechanisms. We show the superiority and applicability of our approach by applying it to the Iranian monthly electrical energy demand problem and comparing it with the most frequently adopted approaches in this field. Results indicate that GBANFIS outperforms its rival approaches and is a promising tool for dealing with short‐term load forecasting problems.</description><subject>adaptive neuro-fuzzy inference system</subject><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Construction</subject><subject>Demand</subject><subject>Electric utilities</subject><subject>electricity load</subject><subject>feature selection</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Fuzzy logic</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Inference</subject><subject>Operations research</subject><subject>Studies</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOK5e_AUNXkTImspXdx-Xwf2AwQUd8Rgy6cqYtScZk_Tq7K-3x1EPHqxLQdXzFsVDyEtg5zDX21BTPgfOpH5EFiBbRUXfq8dkwXrdU81APyXPSrljjIGCdkG2F7HB-zRONaRo84FubMGhsYPd13CPTcQpJ-qnh4dDE6LHjNFhUw6l4q7xKc_DiuMYthhrU76kXGnFvGvGZIfjHp0tNcTtc_LE27Hgi9_9jHy6fLdeXtPV7dXN8mJFnWRC044rCcOgpeLO8o1yXNkNB9G1g3Vct37wkvXC9R1rO0CU4JmWg_fAu1Z5EGfk9enuPqdvE5ZqdqG4-UMbMU3FgGJadErxI_rqH_QuTTnO3xmQPYBWPeiZenOiXE6lZPRmn8NuNmWAmaNzc3RufjmfYTjB38OIh_-Q5mZ9--FPhp4yYXb642_G5q9Gt6JV5vP7KyPUirHlx2uzFj8BqJqUNw</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Kazemi, S.M.R.</creator><creator>Seied Hoseini, Mir Meisam</creator><creator>Abbasian-Naghneh, S.</creator><creator>Rahmati, Seyed Habib A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201403</creationdate><title>An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting</title><author>Kazemi, S.M.R. ; Seied Hoseini, Mir Meisam ; Abbasian-Naghneh, S. ; Rahmati, Seyed Habib A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4036-82541dd6452ca2b5c25ab21387dac267fdf4093c980781ee41f064dff12875f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adaptive neuro-fuzzy inference system</topic><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Construction</topic><topic>Demand</topic><topic>Electric utilities</topic><topic>electricity load</topic><topic>feature selection</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Fuzzy logic</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Inference</topic><topic>Operations research</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazemi, S.M.R.</creatorcontrib><creatorcontrib>Seied Hoseini, Mir Meisam</creatorcontrib><creatorcontrib>Abbasian-Naghneh, S.</creatorcontrib><creatorcontrib>Rahmati, Seyed Habib A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazemi, S.M.R.</au><au>Seied Hoseini, Mir Meisam</au><au>Abbasian-Naghneh, S.</au><au>Rahmati, Seyed Habib A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting</atitle><jtitle>International transactions in operational research</jtitle><addtitle>Intl. Trans. in Op. Res</addtitle><date>2014-03</date><risdate>2014</risdate><volume>21</volume><issue>2</issue><spage>311</spage><epage>326</epage><pages>311-326</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>The continuing growth in size and complexity of electric power systems requires the development of applicable load forecasting models to estimate the future electrical energy demands accurately. This paper presents a novel load forecasting approach called genetic‐based adaptive neuro‐fuzzy inference system (GBANFIS) to construct short‐term load forecasting expert systems and controllers. At the first stage, all records of data are searched by a novel genetic algorithm (GA) to find the most suitable feature of inputs to construct the model. Then, determined inputs are fed into the adaptive neuro‐fuzzy inference system to evolve the initial knowledge‐base of the expert system. Finally, the initial knowledge‐base is searched by another robust GA to induce a better cooperation among the rules by rule weight derivation and rule selection mechanisms. We show the superiority and applicability of our approach by applying it to the Iranian monthly electrical energy demand problem and comparing it with the most frequently adopted approaches in this field. Results indicate that GBANFIS outperforms its rival approaches and is a promising tool for dealing with short‐term load forecasting problems.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.12046</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-6016 |
ispartof | International transactions in operational research, 2014-03, Vol.21 (2), p.311-326 |
issn | 0969-6016 1475-3995 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506385521 |
source | Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | adaptive neuro-fuzzy inference system Adaptive systems Artificial neural networks Construction Demand Electric utilities electricity load feature selection Forecasting Forecasting techniques Fuzzy logic genetic algorithm Genetic algorithms Inference Operations research Studies |
title | An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evolutionary-based%20adaptive%20neuro-fuzzy%20inference%20system%20for%20intelligent%20short-term%20load%20forecasting&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Kazemi,%20S.M.R.&rft.date=2014-03&rft.volume=21&rft.issue=2&rft.spage=311&rft.epage=326&rft.pages=311-326&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.12046&rft_dat=%3Cproquest_cross%3E3188867141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1491165916&rft_id=info:pmid/&rfr_iscdi=true |