An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting

The continuing growth in size and complexity of electric power systems requires the development of applicable load forecasting models to estimate the future electrical energy demands accurately. This paper presents a novel load forecasting approach called genetic‐based adaptive neuro‐fuzzy inference...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions in operational research 2014-03, Vol.21 (2), p.311-326
Hauptverfasser: Kazemi, S.M.R., Seied Hoseini, Mir Meisam, Abbasian-Naghneh, S., Rahmati, Seyed Habib A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 2
container_start_page 311
container_title International transactions in operational research
container_volume 21
creator Kazemi, S.M.R.
Seied Hoseini, Mir Meisam
Abbasian-Naghneh, S.
Rahmati, Seyed Habib A.
description The continuing growth in size and complexity of electric power systems requires the development of applicable load forecasting models to estimate the future electrical energy demands accurately. This paper presents a novel load forecasting approach called genetic‐based adaptive neuro‐fuzzy inference system (GBANFIS) to construct short‐term load forecasting expert systems and controllers. At the first stage, all records of data are searched by a novel genetic algorithm (GA) to find the most suitable feature of inputs to construct the model. Then, determined inputs are fed into the adaptive neuro‐fuzzy inference system to evolve the initial knowledge‐base of the expert system. Finally, the initial knowledge‐base is searched by another robust GA to induce a better cooperation among the rules by rule weight derivation and rule selection mechanisms. We show the superiority and applicability of our approach by applying it to the Iranian monthly electrical energy demand problem and comparing it with the most frequently adopted approaches in this field. Results indicate that GBANFIS outperforms its rival approaches and is a promising tool for dealing with short‐term load forecasting problems.
doi_str_mv 10.1111/itor.12046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3188867141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4036-82541dd6452ca2b5c25ab21387dac267fdf4093c980781ee41f064dff12875f13</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK5e_AUNXkTImspXdx-Xwf2AwQUd8Rgy6cqYtScZk_Tq7K-3x1EPHqxLQdXzFsVDyEtg5zDX21BTPgfOpH5EFiBbRUXfq8dkwXrdU81APyXPSrljjIGCdkG2F7HB-zRONaRo84FubMGhsYPd13CPTcQpJ-qnh4dDE6LHjNFhUw6l4q7xKc_DiuMYthhrU76kXGnFvGvGZIfjHp0tNcTtc_LE27Hgi9_9jHy6fLdeXtPV7dXN8mJFnWRC044rCcOgpeLO8o1yXNkNB9G1g3Vct37wkvXC9R1rO0CU4JmWg_fAu1Z5EGfk9enuPqdvE5ZqdqG4-UMbMU3FgGJadErxI_rqH_QuTTnO3xmQPYBWPeiZenOiXE6lZPRmn8NuNmWAmaNzc3RufjmfYTjB38OIh_-Q5mZ9--FPhp4yYXb642_G5q9Gt6JV5vP7KyPUirHlx2uzFj8BqJqUNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1491165916</pqid></control><display><type>article</type><title>An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Kazemi, S.M.R. ; Seied Hoseini, Mir Meisam ; Abbasian-Naghneh, S. ; Rahmati, Seyed Habib A.</creator><creatorcontrib>Kazemi, S.M.R. ; Seied Hoseini, Mir Meisam ; Abbasian-Naghneh, S. ; Rahmati, Seyed Habib A.</creatorcontrib><description>The continuing growth in size and complexity of electric power systems requires the development of applicable load forecasting models to estimate the future electrical energy demands accurately. This paper presents a novel load forecasting approach called genetic‐based adaptive neuro‐fuzzy inference system (GBANFIS) to construct short‐term load forecasting expert systems and controllers. At the first stage, all records of data are searched by a novel genetic algorithm (GA) to find the most suitable feature of inputs to construct the model. Then, determined inputs are fed into the adaptive neuro‐fuzzy inference system to evolve the initial knowledge‐base of the expert system. Finally, the initial knowledge‐base is searched by another robust GA to induce a better cooperation among the rules by rule weight derivation and rule selection mechanisms. We show the superiority and applicability of our approach by applying it to the Iranian monthly electrical energy demand problem and comparing it with the most frequently adopted approaches in this field. Results indicate that GBANFIS outperforms its rival approaches and is a promising tool for dealing with short‐term load forecasting problems.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.12046</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>adaptive neuro-fuzzy inference system ; Adaptive systems ; Artificial neural networks ; Construction ; Demand ; Electric utilities ; electricity load ; feature selection ; Forecasting ; Forecasting techniques ; Fuzzy logic ; genetic algorithm ; Genetic algorithms ; Inference ; Operations research ; Studies</subject><ispartof>International transactions in operational research, 2014-03, Vol.21 (2), p.311-326</ispartof><rights>2013 The Authors. International Transactions in Operational Research © 2013 International Federation of Operational Research Societies Published by John Wiley &amp; Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA.</rights><rights>Copyright © 2014 International Federation of Operational Research Societies</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4036-82541dd6452ca2b5c25ab21387dac267fdf4093c980781ee41f064dff12875f13</citedby><cites>FETCH-LOGICAL-c4036-82541dd6452ca2b5c25ab21387dac267fdf4093c980781ee41f064dff12875f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fitor.12046$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fitor.12046$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kazemi, S.M.R.</creatorcontrib><creatorcontrib>Seied Hoseini, Mir Meisam</creatorcontrib><creatorcontrib>Abbasian-Naghneh, S.</creatorcontrib><creatorcontrib>Rahmati, Seyed Habib A.</creatorcontrib><title>An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting</title><title>International transactions in operational research</title><addtitle>Intl. Trans. in Op. Res</addtitle><description>The continuing growth in size and complexity of electric power systems requires the development of applicable load forecasting models to estimate the future electrical energy demands accurately. This paper presents a novel load forecasting approach called genetic‐based adaptive neuro‐fuzzy inference system (GBANFIS) to construct short‐term load forecasting expert systems and controllers. At the first stage, all records of data are searched by a novel genetic algorithm (GA) to find the most suitable feature of inputs to construct the model. Then, determined inputs are fed into the adaptive neuro‐fuzzy inference system to evolve the initial knowledge‐base of the expert system. Finally, the initial knowledge‐base is searched by another robust GA to induce a better cooperation among the rules by rule weight derivation and rule selection mechanisms. We show the superiority and applicability of our approach by applying it to the Iranian monthly electrical energy demand problem and comparing it with the most frequently adopted approaches in this field. Results indicate that GBANFIS outperforms its rival approaches and is a promising tool for dealing with short‐term load forecasting problems.</description><subject>adaptive neuro-fuzzy inference system</subject><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Construction</subject><subject>Demand</subject><subject>Electric utilities</subject><subject>electricity load</subject><subject>feature selection</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Fuzzy logic</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Inference</subject><subject>Operations research</subject><subject>Studies</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOK5e_AUNXkTImspXdx-Xwf2AwQUd8Rgy6cqYtScZk_Tq7K-3x1EPHqxLQdXzFsVDyEtg5zDX21BTPgfOpH5EFiBbRUXfq8dkwXrdU81APyXPSrljjIGCdkG2F7HB-zRONaRo84FubMGhsYPd13CPTcQpJ-qnh4dDE6LHjNFhUw6l4q7xKc_DiuMYthhrU76kXGnFvGvGZIfjHp0tNcTtc_LE27Hgi9_9jHy6fLdeXtPV7dXN8mJFnWRC044rCcOgpeLO8o1yXNkNB9G1g3Vct37wkvXC9R1rO0CU4JmWg_fAu1Z5EGfk9enuPqdvE5ZqdqG4-UMbMU3FgGJadErxI_rqH_QuTTnO3xmQPYBWPeiZenOiXE6lZPRmn8NuNmWAmaNzc3RufjmfYTjB38OIh_-Q5mZ9--FPhp4yYXb642_G5q9Gt6JV5vP7KyPUirHlx2uzFj8BqJqUNw</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Kazemi, S.M.R.</creator><creator>Seied Hoseini, Mir Meisam</creator><creator>Abbasian-Naghneh, S.</creator><creator>Rahmati, Seyed Habib A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201403</creationdate><title>An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting</title><author>Kazemi, S.M.R. ; Seied Hoseini, Mir Meisam ; Abbasian-Naghneh, S. ; Rahmati, Seyed Habib A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4036-82541dd6452ca2b5c25ab21387dac267fdf4093c980781ee41f064dff12875f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adaptive neuro-fuzzy inference system</topic><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Construction</topic><topic>Demand</topic><topic>Electric utilities</topic><topic>electricity load</topic><topic>feature selection</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Fuzzy logic</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Inference</topic><topic>Operations research</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazemi, S.M.R.</creatorcontrib><creatorcontrib>Seied Hoseini, Mir Meisam</creatorcontrib><creatorcontrib>Abbasian-Naghneh, S.</creatorcontrib><creatorcontrib>Rahmati, Seyed Habib A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazemi, S.M.R.</au><au>Seied Hoseini, Mir Meisam</au><au>Abbasian-Naghneh, S.</au><au>Rahmati, Seyed Habib A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting</atitle><jtitle>International transactions in operational research</jtitle><addtitle>Intl. Trans. in Op. Res</addtitle><date>2014-03</date><risdate>2014</risdate><volume>21</volume><issue>2</issue><spage>311</spage><epage>326</epage><pages>311-326</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>The continuing growth in size and complexity of electric power systems requires the development of applicable load forecasting models to estimate the future electrical energy demands accurately. This paper presents a novel load forecasting approach called genetic‐based adaptive neuro‐fuzzy inference system (GBANFIS) to construct short‐term load forecasting expert systems and controllers. At the first stage, all records of data are searched by a novel genetic algorithm (GA) to find the most suitable feature of inputs to construct the model. Then, determined inputs are fed into the adaptive neuro‐fuzzy inference system to evolve the initial knowledge‐base of the expert system. Finally, the initial knowledge‐base is searched by another robust GA to induce a better cooperation among the rules by rule weight derivation and rule selection mechanisms. We show the superiority and applicability of our approach by applying it to the Iranian monthly electrical energy demand problem and comparing it with the most frequently adopted approaches in this field. Results indicate that GBANFIS outperforms its rival approaches and is a promising tool for dealing with short‐term load forecasting problems.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.12046</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-6016
ispartof International transactions in operational research, 2014-03, Vol.21 (2), p.311-326
issn 0969-6016
1475-3995
language eng
recordid cdi_proquest_miscellaneous_1506385521
source Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects adaptive neuro-fuzzy inference system
Adaptive systems
Artificial neural networks
Construction
Demand
Electric utilities
electricity load
feature selection
Forecasting
Forecasting techniques
Fuzzy logic
genetic algorithm
Genetic algorithms
Inference
Operations research
Studies
title An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evolutionary-based%20adaptive%20neuro-fuzzy%20inference%20system%20for%20intelligent%20short-term%20load%20forecasting&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Kazemi,%20S.M.R.&rft.date=2014-03&rft.volume=21&rft.issue=2&rft.spage=311&rft.epage=326&rft.pages=311-326&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.12046&rft_dat=%3Cproquest_cross%3E3188867141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1491165916&rft_id=info:pmid/&rfr_iscdi=true