Explicit solutions for the response probability density function of linear systems subjected to random static loads
In the present work a new version of the Probabilistic Transformation Method (PTM) has been reported for the study of linear systems subjected to static random loads. Even if this application could appear trivial, it allows to find some exact results, difficulty obtainable by other approaches. In pa...
Gespeichert in:
Veröffentlicht in: | Probabilistic engineering mechanics 2013-07, Vol.33, p.86-94 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | |
container_start_page | 86 |
container_title | Probabilistic engineering mechanics |
container_volume | 33 |
creator | Falsone, G. Settineri, D. |
description | In the present work a new version of the Probabilistic Transformation Method (PTM) has been reported for the study of linear systems subjected to static random loads. Even if this application could appear trivial, it allows to find some exact results, difficulty obtainable by other approaches. In particular, some interesting results have been obtained in the case of uniformly distributed random loads. For a generic vector of random loads this version of the PTM has allowed to obtain the characteristic function (cf) of any response elements in a very simple and effective way.
•A new version of the probabilistic transformation method is proposed.•The probability density functions of single response quantity are evaluated.•Some exact results for the response of linear systems to generic random loads are given.•Strongly non-Gaussian responses are considered. |
doi_str_mv | 10.1016/j.probengmech.2013.03.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266892013000325</els_id><sourcerecordid>1506385257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-7787219210cff9ed80f5efc7c1edf080f00651655b53ef9b09c53e064e082da63</originalsourceid><addsrcrecordid>eNqNkUGP0zAQhS0EEqXwH8yNS8rYqe3kiKqFRVppL8vZSuwx6yqJi8dB9N_jqBy4gTTS85M-z4z9GHsv4CBA6I_nwyWnEZfvM7rngwTRHqAWiBdsJzrTNUdp1Eu2A6l10_USXrM3ROcKGHHsd4zufl2m6GLhlKa1xLQQDynz8ow8I12qR76NGMY4xXLlHhfaNKyL23CeAp_igkPmdKWCM3FaxzO6gp6XxPOw-DRzKkOJjk9p8PSWvQrDRPjuj-7Zt893T6f75uHxy9fTp4fGtZ0pjTGdkaKXAlwIPfoOgsLgjBPoA1QHoJXQSo2qxdCP0Lt6AH1E6KQfdLtnH2596_4_VqRi50gOp2lYMK1khQLddkoq82-0NVK3bWUr2t9QlxNRxmAvOc5DvloBdsvEnu1fmdgtEwu1qu7Z6XYX67N_RsyWXMTFoY-5_pj1Kf5Hl9-Dap3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372633525</pqid></control><display><type>article</type><title>Explicit solutions for the response probability density function of linear systems subjected to random static loads</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Falsone, G. ; Settineri, D.</creator><creatorcontrib>Falsone, G. ; Settineri, D.</creatorcontrib><description>In the present work a new version of the Probabilistic Transformation Method (PTM) has been reported for the study of linear systems subjected to static random loads. Even if this application could appear trivial, it allows to find some exact results, difficulty obtainable by other approaches. In particular, some interesting results have been obtained in the case of uniformly distributed random loads. For a generic vector of random loads this version of the PTM has allowed to obtain the characteristic function (cf) of any response elements in a very simple and effective way.
•A new version of the probabilistic transformation method is proposed.•The probability density functions of single response quantity are evaluated.•Some exact results for the response of linear systems to generic random loads are given.•Strongly non-Gaussian responses are considered.</description><identifier>ISSN: 0266-8920</identifier><identifier>EISSN: 1878-4275</identifier><identifier>DOI: 10.1016/j.probengmech.2013.03.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Characteristic function ; Linear systems ; Mathematical analysis ; Probabilistic methods ; Probability density function ; Probability density functions ; Probability theory ; Probability transformation ; Random loads ; Transformations ; Vectors (mathematics)</subject><ispartof>Probabilistic engineering mechanics, 2013-07, Vol.33, p.86-94</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-7787219210cff9ed80f5efc7c1edf080f00651655b53ef9b09c53e064e082da63</citedby><cites>FETCH-LOGICAL-c387t-7787219210cff9ed80f5efc7c1edf080f00651655b53ef9b09c53e064e082da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.probengmech.2013.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Falsone, G.</creatorcontrib><creatorcontrib>Settineri, D.</creatorcontrib><title>Explicit solutions for the response probability density function of linear systems subjected to random static loads</title><title>Probabilistic engineering mechanics</title><description>In the present work a new version of the Probabilistic Transformation Method (PTM) has been reported for the study of linear systems subjected to static random loads. Even if this application could appear trivial, it allows to find some exact results, difficulty obtainable by other approaches. In particular, some interesting results have been obtained in the case of uniformly distributed random loads. For a generic vector of random loads this version of the PTM has allowed to obtain the characteristic function (cf) of any response elements in a very simple and effective way.
•A new version of the probabilistic transformation method is proposed.•The probability density functions of single response quantity are evaluated.•Some exact results for the response of linear systems to generic random loads are given.•Strongly non-Gaussian responses are considered.</description><subject>Characteristic function</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Probabilistic methods</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Probability transformation</subject><subject>Random loads</subject><subject>Transformations</subject><subject>Vectors (mathematics)</subject><issn>0266-8920</issn><issn>1878-4275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUGP0zAQhS0EEqXwH8yNS8rYqe3kiKqFRVppL8vZSuwx6yqJi8dB9N_jqBy4gTTS85M-z4z9GHsv4CBA6I_nwyWnEZfvM7rngwTRHqAWiBdsJzrTNUdp1Eu2A6l10_USXrM3ROcKGHHsd4zufl2m6GLhlKa1xLQQDynz8ow8I12qR76NGMY4xXLlHhfaNKyL23CeAp_igkPmdKWCM3FaxzO6gp6XxPOw-DRzKkOJjk9p8PSWvQrDRPjuj-7Zt893T6f75uHxy9fTp4fGtZ0pjTGdkaKXAlwIPfoOgsLgjBPoA1QHoJXQSo2qxdCP0Lt6AH1E6KQfdLtnH2596_4_VqRi50gOp2lYMK1khQLddkoq82-0NVK3bWUr2t9QlxNRxmAvOc5DvloBdsvEnu1fmdgtEwu1qu7Z6XYX67N_RsyWXMTFoY-5_pj1Kf5Hl9-Dap3A</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Falsone, G.</creator><creator>Settineri, D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130701</creationdate><title>Explicit solutions for the response probability density function of linear systems subjected to random static loads</title><author>Falsone, G. ; Settineri, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-7787219210cff9ed80f5efc7c1edf080f00651655b53ef9b09c53e064e082da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characteristic function</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Probabilistic methods</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Probability transformation</topic><topic>Random loads</topic><topic>Transformations</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falsone, G.</creatorcontrib><creatorcontrib>Settineri, D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Probabilistic engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falsone, G.</au><au>Settineri, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit solutions for the response probability density function of linear systems subjected to random static loads</atitle><jtitle>Probabilistic engineering mechanics</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>33</volume><spage>86</spage><epage>94</epage><pages>86-94</pages><issn>0266-8920</issn><eissn>1878-4275</eissn><abstract>In the present work a new version of the Probabilistic Transformation Method (PTM) has been reported for the study of linear systems subjected to static random loads. Even if this application could appear trivial, it allows to find some exact results, difficulty obtainable by other approaches. In particular, some interesting results have been obtained in the case of uniformly distributed random loads. For a generic vector of random loads this version of the PTM has allowed to obtain the characteristic function (cf) of any response elements in a very simple and effective way.
•A new version of the probabilistic transformation method is proposed.•The probability density functions of single response quantity are evaluated.•Some exact results for the response of linear systems to generic random loads are given.•Strongly non-Gaussian responses are considered.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.probengmech.2013.03.001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-8920 |
ispartof | Probabilistic engineering mechanics, 2013-07, Vol.33, p.86-94 |
issn | 0266-8920 1878-4275 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506385257 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Characteristic function Linear systems Mathematical analysis Probabilistic methods Probability density function Probability density functions Probability theory Probability transformation Random loads Transformations Vectors (mathematics) |
title | Explicit solutions for the response probability density function of linear systems subjected to random static loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20solutions%20for%20the%20response%20probability%20density%20function%20of%20linear%20systems%20subjected%20to%20random%20static%20loads&rft.jtitle=Probabilistic%20engineering%20mechanics&rft.au=Falsone,%20G.&rft.date=2013-07-01&rft.volume=33&rft.spage=86&rft.epage=94&rft.pages=86-94&rft.issn=0266-8920&rft.eissn=1878-4275&rft_id=info:doi/10.1016/j.probengmech.2013.03.001&rft_dat=%3Cproquest_cross%3E1506385257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372633525&rft_id=info:pmid/&rft_els_id=S0266892013000325&rfr_iscdi=true |