Explicit solutions for the response probability density function of linear systems subjected to random static loads

In the present work a new version of the Probabilistic Transformation Method (PTM) has been reported for the study of linear systems subjected to static random loads. Even if this application could appear trivial, it allows to find some exact results, difficulty obtainable by other approaches. In pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probabilistic engineering mechanics 2013-07, Vol.33, p.86-94
Hauptverfasser: Falsone, G., Settineri, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue
container_start_page 86
container_title Probabilistic engineering mechanics
container_volume 33
creator Falsone, G.
Settineri, D.
description In the present work a new version of the Probabilistic Transformation Method (PTM) has been reported for the study of linear systems subjected to static random loads. Even if this application could appear trivial, it allows to find some exact results, difficulty obtainable by other approaches. In particular, some interesting results have been obtained in the case of uniformly distributed random loads. For a generic vector of random loads this version of the PTM has allowed to obtain the characteristic function (cf) of any response elements in a very simple and effective way. •A new version of the probabilistic transformation method is proposed.•The probability density functions of single response quantity are evaluated.•Some exact results for the response of linear systems to generic random loads are given.•Strongly non-Gaussian responses are considered.
doi_str_mv 10.1016/j.probengmech.2013.03.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506385257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266892013000325</els_id><sourcerecordid>1506385257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-7787219210cff9ed80f5efc7c1edf080f00651655b53ef9b09c53e064e082da63</originalsourceid><addsrcrecordid>eNqNkUGP0zAQhS0EEqXwH8yNS8rYqe3kiKqFRVppL8vZSuwx6yqJi8dB9N_jqBy4gTTS85M-z4z9GHsv4CBA6I_nwyWnEZfvM7rngwTRHqAWiBdsJzrTNUdp1Eu2A6l10_USXrM3ROcKGHHsd4zufl2m6GLhlKa1xLQQDynz8ow8I12qR76NGMY4xXLlHhfaNKyL23CeAp_igkPmdKWCM3FaxzO6gp6XxPOw-DRzKkOJjk9p8PSWvQrDRPjuj-7Zt893T6f75uHxy9fTp4fGtZ0pjTGdkaKXAlwIPfoOgsLgjBPoA1QHoJXQSo2qxdCP0Lt6AH1E6KQfdLtnH2596_4_VqRi50gOp2lYMK1khQLddkoq82-0NVK3bWUr2t9QlxNRxmAvOc5DvloBdsvEnu1fmdgtEwu1qu7Z6XYX67N_RsyWXMTFoY-5_pj1Kf5Hl9-Dap3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372633525</pqid></control><display><type>article</type><title>Explicit solutions for the response probability density function of linear systems subjected to random static loads</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Falsone, G. ; Settineri, D.</creator><creatorcontrib>Falsone, G. ; Settineri, D.</creatorcontrib><description>In the present work a new version of the Probabilistic Transformation Method (PTM) has been reported for the study of linear systems subjected to static random loads. Even if this application could appear trivial, it allows to find some exact results, difficulty obtainable by other approaches. In particular, some interesting results have been obtained in the case of uniformly distributed random loads. For a generic vector of random loads this version of the PTM has allowed to obtain the characteristic function (cf) of any response elements in a very simple and effective way. •A new version of the probabilistic transformation method is proposed.•The probability density functions of single response quantity are evaluated.•Some exact results for the response of linear systems to generic random loads are given.•Strongly non-Gaussian responses are considered.</description><identifier>ISSN: 0266-8920</identifier><identifier>EISSN: 1878-4275</identifier><identifier>DOI: 10.1016/j.probengmech.2013.03.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Characteristic function ; Linear systems ; Mathematical analysis ; Probabilistic methods ; Probability density function ; Probability density functions ; Probability theory ; Probability transformation ; Random loads ; Transformations ; Vectors (mathematics)</subject><ispartof>Probabilistic engineering mechanics, 2013-07, Vol.33, p.86-94</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-7787219210cff9ed80f5efc7c1edf080f00651655b53ef9b09c53e064e082da63</citedby><cites>FETCH-LOGICAL-c387t-7787219210cff9ed80f5efc7c1edf080f00651655b53ef9b09c53e064e082da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.probengmech.2013.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Falsone, G.</creatorcontrib><creatorcontrib>Settineri, D.</creatorcontrib><title>Explicit solutions for the response probability density function of linear systems subjected to random static loads</title><title>Probabilistic engineering mechanics</title><description>In the present work a new version of the Probabilistic Transformation Method (PTM) has been reported for the study of linear systems subjected to static random loads. Even if this application could appear trivial, it allows to find some exact results, difficulty obtainable by other approaches. In particular, some interesting results have been obtained in the case of uniformly distributed random loads. For a generic vector of random loads this version of the PTM has allowed to obtain the characteristic function (cf) of any response elements in a very simple and effective way. •A new version of the probabilistic transformation method is proposed.•The probability density functions of single response quantity are evaluated.•Some exact results for the response of linear systems to generic random loads are given.•Strongly non-Gaussian responses are considered.</description><subject>Characteristic function</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Probabilistic methods</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Probability transformation</subject><subject>Random loads</subject><subject>Transformations</subject><subject>Vectors (mathematics)</subject><issn>0266-8920</issn><issn>1878-4275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUGP0zAQhS0EEqXwH8yNS8rYqe3kiKqFRVppL8vZSuwx6yqJi8dB9N_jqBy4gTTS85M-z4z9GHsv4CBA6I_nwyWnEZfvM7rngwTRHqAWiBdsJzrTNUdp1Eu2A6l10_USXrM3ROcKGHHsd4zufl2m6GLhlKa1xLQQDynz8ow8I12qR76NGMY4xXLlHhfaNKyL23CeAp_igkPmdKWCM3FaxzO6gp6XxPOw-DRzKkOJjk9p8PSWvQrDRPjuj-7Zt893T6f75uHxy9fTp4fGtZ0pjTGdkaKXAlwIPfoOgsLgjBPoA1QHoJXQSo2qxdCP0Lt6AH1E6KQfdLtnH2596_4_VqRi50gOp2lYMK1khQLddkoq82-0NVK3bWUr2t9QlxNRxmAvOc5DvloBdsvEnu1fmdgtEwu1qu7Z6XYX67N_RsyWXMTFoY-5_pj1Kf5Hl9-Dap3A</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Falsone, G.</creator><creator>Settineri, D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130701</creationdate><title>Explicit solutions for the response probability density function of linear systems subjected to random static loads</title><author>Falsone, G. ; Settineri, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-7787219210cff9ed80f5efc7c1edf080f00651655b53ef9b09c53e064e082da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characteristic function</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Probabilistic methods</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Probability transformation</topic><topic>Random loads</topic><topic>Transformations</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falsone, G.</creatorcontrib><creatorcontrib>Settineri, D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Probabilistic engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falsone, G.</au><au>Settineri, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit solutions for the response probability density function of linear systems subjected to random static loads</atitle><jtitle>Probabilistic engineering mechanics</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>33</volume><spage>86</spage><epage>94</epage><pages>86-94</pages><issn>0266-8920</issn><eissn>1878-4275</eissn><abstract>In the present work a new version of the Probabilistic Transformation Method (PTM) has been reported for the study of linear systems subjected to static random loads. Even if this application could appear trivial, it allows to find some exact results, difficulty obtainable by other approaches. In particular, some interesting results have been obtained in the case of uniformly distributed random loads. For a generic vector of random loads this version of the PTM has allowed to obtain the characteristic function (cf) of any response elements in a very simple and effective way. •A new version of the probabilistic transformation method is proposed.•The probability density functions of single response quantity are evaluated.•Some exact results for the response of linear systems to generic random loads are given.•Strongly non-Gaussian responses are considered.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.probengmech.2013.03.001</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-8920
ispartof Probabilistic engineering mechanics, 2013-07, Vol.33, p.86-94
issn 0266-8920
1878-4275
language eng
recordid cdi_proquest_miscellaneous_1506385257
source Elsevier ScienceDirect Journals Complete
subjects Characteristic function
Linear systems
Mathematical analysis
Probabilistic methods
Probability density function
Probability density functions
Probability theory
Probability transformation
Random loads
Transformations
Vectors (mathematics)
title Explicit solutions for the response probability density function of linear systems subjected to random static loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20solutions%20for%20the%20response%20probability%20density%20function%20of%20linear%20systems%20subjected%20to%20random%20static%20loads&rft.jtitle=Probabilistic%20engineering%20mechanics&rft.au=Falsone,%20G.&rft.date=2013-07-01&rft.volume=33&rft.spage=86&rft.epage=94&rft.pages=86-94&rft.issn=0266-8920&rft.eissn=1878-4275&rft_id=info:doi/10.1016/j.probengmech.2013.03.001&rft_dat=%3Cproquest_cross%3E1506385257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372633525&rft_id=info:pmid/&rft_els_id=S0266892013000325&rfr_iscdi=true