Graded GaAsSb strain reducing layers covering InAs/GaAs quantum dots

We have grown new InAs/GaAs quantum dot (QD) structures with graded Sb concentration of GaAs(1−x)Sbx strain reducing layer (SRL). New types of GaAsSb SRLs with graded concentration of Sb are theoretically and experimentally studied. We compare properties of three different Sb concentration gradients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2013-05, Vol.370, p.303-306
Hauptverfasser: Hospodková, A., Zíková, M., Pangrác, J., Oswald, J., Kuldová, K., Vyskočil, J., Hulicius, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue
container_start_page 303
container_title Journal of crystal growth
container_volume 370
creator Hospodková, A.
Zíková, M.
Pangrác, J.
Oswald, J.
Kuldová, K.
Vyskočil, J.
Hulicius, E.
description We have grown new InAs/GaAs quantum dot (QD) structures with graded Sb concentration of GaAs(1−x)Sbx strain reducing layer (SRL). New types of GaAsSb SRLs with graded concentration of Sb are theoretically and experimentally studied. We compare properties of three different Sb concentration gradients in SRL, constant, increasing and decreasing during the growth. Both types of non-constant gradients help us to prevent transition of the InAs(QD)/GaAsSb(SRL) heterojunction from type I to type II, to increase emission wavelength and to retain high luminescence intensity of these types of QD structures. Comparison of photoluminescence of samples with different concentration gradients and similar average Sb concentration in SRLs is shown. The longest wavelength of type I ground state transition was achieved on sample with decreasing gradation of Sb content in SRL—1399nm (0.886eV). ► We suggest new types of graded GaAsSb strain reducing layers covering InAs/GaAs QDs. ► The longest photoluminescence wavelength was achieved for decreasing Sb gradient in SRL. ► We achieved type I ground state transition at 1399nm, FWHM 35meV and intense RT PL. ► The experimental data were in agreement with theoretically expected behavior.
doi_str_mv 10.1016/j.jcrysgro.2012.08.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506384504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024812005593</els_id><sourcerecordid>1464547134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a05784e2f8bf8848a6109b8ff63fca4ae4682c5ce616ff27c7ac5917cd12137c3</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVpoNtNX6H4UujFzkiWJe2tS5psAoEc2p6FdjwKWrx2orED-_a12bTXXGYY-P6Z4RPiq4RKgjRXh-qA-cRPeagUSFWBqwDsB7GSztZlA6A-itVcVQlKu0_iM_MBYE5KWImfuxxaaotd2PKvfcFjDqkvMrUTpv6p6MKJMhc4vFJe5vt-y1cLW7xMoR-nY9EOI1-Kixg6pi9vfS3-3N78vr4rHx5399fbhxI1uLEM0FinSUW3j85pF-YPNnsXo6kjBh1IG6ewQTLSxKgs2oDNRlpspZK1xXotvp_3PufhZSIe_TExUteFnoaJvWzA1E43oN9HtdGNtrJeUHNGMQ_MmaJ_zukY8slL8Ithf_D_DPvFsAfnZ8Nz8NvbjcAYuphDj4n_p5WtN87AZuZ-nDma3bwmyp4xUY_Upkw4-nZI7536C1eYlAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464547134</pqid></control><display><type>article</type><title>Graded GaAsSb strain reducing layers covering InAs/GaAs quantum dots</title><source>Elsevier ScienceDirect Journals</source><creator>Hospodková, A. ; Zíková, M. ; Pangrác, J. ; Oswald, J. ; Kuldová, K. ; Vyskočil, J. ; Hulicius, E.</creator><creatorcontrib>Hospodková, A. ; Zíková, M. ; Pangrác, J. ; Oswald, J. ; Kuldová, K. ; Vyskočil, J. ; Hulicius, E.</creatorcontrib><description>We have grown new InAs/GaAs quantum dot (QD) structures with graded Sb concentration of GaAs(1−x)Sbx strain reducing layer (SRL). New types of GaAsSb SRLs with graded concentration of Sb are theoretically and experimentally studied. We compare properties of three different Sb concentration gradients in SRL, constant, increasing and decreasing during the growth. Both types of non-constant gradients help us to prevent transition of the InAs(QD)/GaAsSb(SRL) heterojunction from type I to type II, to increase emission wavelength and to retain high luminescence intensity of these types of QD structures. Comparison of photoluminescence of samples with different concentration gradients and similar average Sb concentration in SRLs is shown. The longest wavelength of type I ground state transition was achieved on sample with decreasing gradation of Sb content in SRL—1399nm (0.886eV). ► We suggest new types of graded GaAsSb strain reducing layers covering InAs/GaAs QDs. ► The longest photoluminescence wavelength was achieved for decreasing Sb gradient in SRL. ► We achieved type I ground state transition at 1399nm, FWHM 35meV and intense RT PL. ► The experimental data were in agreement with theoretically expected behavior.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2012.08.007</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Band alignment ; A1. Photoluminescence ; A1. Quantum dot ; A1. Strain reducing layer ; A3. MOVPE ; Antimony ; B2. InAs/GaAs ; Concentration gradient ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Gallium arsenide ; Gallium arsenides ; Indium arsenides ; Materials science ; Methods of crystal growth; physics of crystal growth ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physics ; Quantum dots ; Solubility, segregation, and mixing; phase separation ; Strain ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Wavelengths</subject><ispartof>Journal of crystal growth, 2013-05, Vol.370, p.303-306</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a05784e2f8bf8848a6109b8ff63fca4ae4682c5ce616ff27c7ac5917cd12137c3</citedby><cites>FETCH-LOGICAL-c408t-a05784e2f8bf8848a6109b8ff63fca4ae4682c5ce616ff27c7ac5917cd12137c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2012.08.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27398609$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hospodková, A.</creatorcontrib><creatorcontrib>Zíková, M.</creatorcontrib><creatorcontrib>Pangrác, J.</creatorcontrib><creatorcontrib>Oswald, J.</creatorcontrib><creatorcontrib>Kuldová, K.</creatorcontrib><creatorcontrib>Vyskočil, J.</creatorcontrib><creatorcontrib>Hulicius, E.</creatorcontrib><title>Graded GaAsSb strain reducing layers covering InAs/GaAs quantum dots</title><title>Journal of crystal growth</title><description>We have grown new InAs/GaAs quantum dot (QD) structures with graded Sb concentration of GaAs(1−x)Sbx strain reducing layer (SRL). New types of GaAsSb SRLs with graded concentration of Sb are theoretically and experimentally studied. We compare properties of three different Sb concentration gradients in SRL, constant, increasing and decreasing during the growth. Both types of non-constant gradients help us to prevent transition of the InAs(QD)/GaAsSb(SRL) heterojunction from type I to type II, to increase emission wavelength and to retain high luminescence intensity of these types of QD structures. Comparison of photoluminescence of samples with different concentration gradients and similar average Sb concentration in SRLs is shown. The longest wavelength of type I ground state transition was achieved on sample with decreasing gradation of Sb content in SRL—1399nm (0.886eV). ► We suggest new types of graded GaAsSb strain reducing layers covering InAs/GaAs QDs. ► The longest photoluminescence wavelength was achieved for decreasing Sb gradient in SRL. ► We achieved type I ground state transition at 1399nm, FWHM 35meV and intense RT PL. ► The experimental data were in agreement with theoretically expected behavior.</description><subject>A1. Band alignment</subject><subject>A1. Photoluminescence</subject><subject>A1. Quantum dot</subject><subject>A1. Strain reducing layer</subject><subject>A3. MOVPE</subject><subject>Antimony</subject><subject>B2. InAs/GaAs</subject><subject>Concentration gradient</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Gallium arsenide</subject><subject>Gallium arsenides</subject><subject>Indium arsenides</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Solubility, segregation, and mixing; phase separation</subject><subject>Strain</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Wavelengths</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVpoNtNX6H4UujFzkiWJe2tS5psAoEc2p6FdjwKWrx2orED-_a12bTXXGYY-P6Z4RPiq4RKgjRXh-qA-cRPeagUSFWBqwDsB7GSztZlA6A-itVcVQlKu0_iM_MBYE5KWImfuxxaaotd2PKvfcFjDqkvMrUTpv6p6MKJMhc4vFJe5vt-y1cLW7xMoR-nY9EOI1-Kixg6pi9vfS3-3N78vr4rHx5399fbhxI1uLEM0FinSUW3j85pF-YPNnsXo6kjBh1IG6ewQTLSxKgs2oDNRlpspZK1xXotvp_3PufhZSIe_TExUteFnoaJvWzA1E43oN9HtdGNtrJeUHNGMQ_MmaJ_zukY8slL8Ithf_D_DPvFsAfnZ8Nz8NvbjcAYuphDj4n_p5WtN87AZuZ-nDma3bwmyp4xUY_Upkw4-nZI7536C1eYlAc</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Hospodková, A.</creator><creator>Zíková, M.</creator><creator>Pangrác, J.</creator><creator>Oswald, J.</creator><creator>Kuldová, K.</creator><creator>Vyskočil, J.</creator><creator>Hulicius, E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Graded GaAsSb strain reducing layers covering InAs/GaAs quantum dots</title><author>Hospodková, A. ; Zíková, M. ; Pangrác, J. ; Oswald, J. ; Kuldová, K. ; Vyskočil, J. ; Hulicius, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a05784e2f8bf8848a6109b8ff63fca4ae4682c5ce616ff27c7ac5917cd12137c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>A1. Band alignment</topic><topic>A1. Photoluminescence</topic><topic>A1. Quantum dot</topic><topic>A1. Strain reducing layer</topic><topic>A3. MOVPE</topic><topic>Antimony</topic><topic>B2. InAs/GaAs</topic><topic>Concentration gradient</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Gallium arsenide</topic><topic>Gallium arsenides</topic><topic>Indium arsenides</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Solubility, segregation, and mixing; phase separation</topic><topic>Strain</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hospodková, A.</creatorcontrib><creatorcontrib>Zíková, M.</creatorcontrib><creatorcontrib>Pangrác, J.</creatorcontrib><creatorcontrib>Oswald, J.</creatorcontrib><creatorcontrib>Kuldová, K.</creatorcontrib><creatorcontrib>Vyskočil, J.</creatorcontrib><creatorcontrib>Hulicius, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hospodková, A.</au><au>Zíková, M.</au><au>Pangrác, J.</au><au>Oswald, J.</au><au>Kuldová, K.</au><au>Vyskočil, J.</au><au>Hulicius, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graded GaAsSb strain reducing layers covering InAs/GaAs quantum dots</atitle><jtitle>Journal of crystal growth</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>370</volume><spage>303</spage><epage>306</epage><pages>303-306</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>We have grown new InAs/GaAs quantum dot (QD) structures with graded Sb concentration of GaAs(1−x)Sbx strain reducing layer (SRL). New types of GaAsSb SRLs with graded concentration of Sb are theoretically and experimentally studied. We compare properties of three different Sb concentration gradients in SRL, constant, increasing and decreasing during the growth. Both types of non-constant gradients help us to prevent transition of the InAs(QD)/GaAsSb(SRL) heterojunction from type I to type II, to increase emission wavelength and to retain high luminescence intensity of these types of QD structures. Comparison of photoluminescence of samples with different concentration gradients and similar average Sb concentration in SRLs is shown. The longest wavelength of type I ground state transition was achieved on sample with decreasing gradation of Sb content in SRL—1399nm (0.886eV). ► We suggest new types of graded GaAsSb strain reducing layers covering InAs/GaAs QDs. ► The longest photoluminescence wavelength was achieved for decreasing Sb gradient in SRL. ► We achieved type I ground state transition at 1399nm, FWHM 35meV and intense RT PL. ► The experimental data were in agreement with theoretically expected behavior.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2012.08.007</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2013-05, Vol.370, p.303-306
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_1506384504
source Elsevier ScienceDirect Journals
subjects A1. Band alignment
A1. Photoluminescence
A1. Quantum dot
A1. Strain reducing layer
A3. MOVPE
Antimony
B2. InAs/GaAs
Concentration gradient
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Gallium arsenide
Gallium arsenides
Indium arsenides
Materials science
Methods of crystal growth
physics of crystal growth
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Physics
Quantum dots
Solubility, segregation, and mixing
phase separation
Strain
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
Wavelengths
title Graded GaAsSb strain reducing layers covering InAs/GaAs quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graded%20GaAsSb%20strain%20reducing%20layers%20covering%20InAs/GaAs%20quantum%20dots&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Hospodkov%C3%A1,%20A.&rft.date=2013-05-01&rft.volume=370&rft.spage=303&rft.epage=306&rft.pages=303-306&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2012.08.007&rft_dat=%3Cproquest_cross%3E1464547134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464547134&rft_id=info:pmid/&rft_els_id=S0022024812005593&rfr_iscdi=true