Large-scale fluid simulation using velocity-vorticity domain decomposition
Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for ellipti...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2012-11, Vol.31 (6), p.1-9 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 31 |
creator | Golas, Abhinav Narain, Rahul Sewall, Jason Krajcevski, Pavel Dubey, Pradeep Lin, Ming |
description | Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods.
We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles. |
doi_str_mv | 10.1145/2366145.2366167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506383195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506383195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-eb77ff89f48ca419fe5ea89de22881aea692ee7746222263e46482a5b5a90a103</originalsourceid><addsrcrecordid>eNotkDtPwzAURi0EEqUws2ZkMbXjZ0ZU8VQlFpitW-e6MnLiEieV-u9pae9y7nD0DYeQe84eOZdqUQutD3z8pzYXZMaVMtQIbS_JjBnBKBOMX5ObUn4YY1pKPSMfKxg2SIuHhFVIU2yrErspwRhzX00l9ptqhyn7OO7pLg9jPH5VmzuIfdWiz902l3i0b8lVgFTw7sw5-X55_lq-0dXn6_vyaUW9sHykuDYmBNsEaT1I3gRUCLZpsa6t5YCgmxrRGKnrw2mBUktbg1oraBhwJubk4bS7HfLvhGV0XSweU4Ie81QcV0wLK3ijDuripPohlzJgcNshdjDsHWfuWM2dq7lzNfEH-55f6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506383195</pqid></control><display><type>article</type><title>Large-scale fluid simulation using velocity-vorticity domain decomposition</title><source>ACM Digital Library Complete</source><creator>Golas, Abhinav ; Narain, Rahul ; Sewall, Jason ; Krajcevski, Pavel ; Dubey, Pradeep ; Lin, Ming</creator><creatorcontrib>Golas, Abhinav ; Narain, Rahul ; Sewall, Jason ; Krajcevski, Pavel ; Dubey, Pradeep ; Lin, Ming</creatorcontrib><description>Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods.
We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/2366145.2366167</identifier><language>eng</language><subject>Computational fluid dynamics</subject><ispartof>ACM transactions on graphics, 2012-11, Vol.31 (6), p.1-9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-eb77ff89f48ca419fe5ea89de22881aea692ee7746222263e46482a5b5a90a103</citedby><cites>FETCH-LOGICAL-c381t-eb77ff89f48ca419fe5ea89de22881aea692ee7746222263e46482a5b5a90a103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Golas, Abhinav</creatorcontrib><creatorcontrib>Narain, Rahul</creatorcontrib><creatorcontrib>Sewall, Jason</creatorcontrib><creatorcontrib>Krajcevski, Pavel</creatorcontrib><creatorcontrib>Dubey, Pradeep</creatorcontrib><creatorcontrib>Lin, Ming</creatorcontrib><title>Large-scale fluid simulation using velocity-vorticity domain decomposition</title><title>ACM transactions on graphics</title><description>Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods.
We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles.</description><subject>Computational fluid dynamics</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAURi0EEqUws2ZkMbXjZ0ZU8VQlFpitW-e6MnLiEieV-u9pae9y7nD0DYeQe84eOZdqUQutD3z8pzYXZMaVMtQIbS_JjBnBKBOMX5ObUn4YY1pKPSMfKxg2SIuHhFVIU2yrErspwRhzX00l9ptqhyn7OO7pLg9jPH5VmzuIfdWiz902l3i0b8lVgFTw7sw5-X55_lq-0dXn6_vyaUW9sHykuDYmBNsEaT1I3gRUCLZpsa6t5YCgmxrRGKnrw2mBUktbg1oraBhwJubk4bS7HfLvhGV0XSweU4Ie81QcV0wLK3ijDuripPohlzJgcNshdjDsHWfuWM2dq7lzNfEH-55f6w</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Golas, Abhinav</creator><creator>Narain, Rahul</creator><creator>Sewall, Jason</creator><creator>Krajcevski, Pavel</creator><creator>Dubey, Pradeep</creator><creator>Lin, Ming</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Large-scale fluid simulation using velocity-vorticity domain decomposition</title><author>Golas, Abhinav ; Narain, Rahul ; Sewall, Jason ; Krajcevski, Pavel ; Dubey, Pradeep ; Lin, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-eb77ff89f48ca419fe5ea89de22881aea692ee7746222263e46482a5b5a90a103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational fluid dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golas, Abhinav</creatorcontrib><creatorcontrib>Narain, Rahul</creatorcontrib><creatorcontrib>Sewall, Jason</creatorcontrib><creatorcontrib>Krajcevski, Pavel</creatorcontrib><creatorcontrib>Dubey, Pradeep</creatorcontrib><creatorcontrib>Lin, Ming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golas, Abhinav</au><au>Narain, Rahul</au><au>Sewall, Jason</au><au>Krajcevski, Pavel</au><au>Dubey, Pradeep</au><au>Lin, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale fluid simulation using velocity-vorticity domain decomposition</atitle><jtitle>ACM transactions on graphics</jtitle><date>2012-11</date><risdate>2012</risdate><volume>31</volume><issue>6</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods.
We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles.</abstract><doi>10.1145/2366145.2366167</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2012-11, Vol.31 (6), p.1-9 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506383195 |
source | ACM Digital Library Complete |
subjects | Computational fluid dynamics |
title | Large-scale fluid simulation using velocity-vorticity domain decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20fluid%20simulation%20using%20velocity-vorticity%20domain%20decomposition&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Golas,%20Abhinav&rft.date=2012-11&rft.volume=31&rft.issue=6&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/2366145.2366167&rft_dat=%3Cproquest_cross%3E1506383195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506383195&rft_id=info:pmid/&rfr_iscdi=true |