Large-scale fluid simulation using velocity-vorticity domain decomposition

Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for ellipti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2012-11, Vol.31 (6), p.1-9
Hauptverfasser: Golas, Abhinav, Narain, Rahul, Sewall, Jason, Krajcevski, Pavel, Dubey, Pradeep, Lin, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 6
container_start_page 1
container_title ACM transactions on graphics
container_volume 31
creator Golas, Abhinav
Narain, Rahul
Sewall, Jason
Krajcevski, Pavel
Dubey, Pradeep
Lin, Ming
description Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods. We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles.
doi_str_mv 10.1145/2366145.2366167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506383195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506383195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-eb77ff89f48ca419fe5ea89de22881aea692ee7746222263e46482a5b5a90a103</originalsourceid><addsrcrecordid>eNotkDtPwzAURi0EEqUws2ZkMbXjZ0ZU8VQlFpitW-e6MnLiEieV-u9pae9y7nD0DYeQe84eOZdqUQutD3z8pzYXZMaVMtQIbS_JjBnBKBOMX5ObUn4YY1pKPSMfKxg2SIuHhFVIU2yrErspwRhzX00l9ptqhyn7OO7pLg9jPH5VmzuIfdWiz902l3i0b8lVgFTw7sw5-X55_lq-0dXn6_vyaUW9sHykuDYmBNsEaT1I3gRUCLZpsa6t5YCgmxrRGKnrw2mBUktbg1oraBhwJubk4bS7HfLvhGV0XSweU4Ie81QcV0wLK3ijDuripPohlzJgcNshdjDsHWfuWM2dq7lzNfEH-55f6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506383195</pqid></control><display><type>article</type><title>Large-scale fluid simulation using velocity-vorticity domain decomposition</title><source>ACM Digital Library Complete</source><creator>Golas, Abhinav ; Narain, Rahul ; Sewall, Jason ; Krajcevski, Pavel ; Dubey, Pradeep ; Lin, Ming</creator><creatorcontrib>Golas, Abhinav ; Narain, Rahul ; Sewall, Jason ; Krajcevski, Pavel ; Dubey, Pradeep ; Lin, Ming</creatorcontrib><description>Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods. We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/2366145.2366167</identifier><language>eng</language><subject>Computational fluid dynamics</subject><ispartof>ACM transactions on graphics, 2012-11, Vol.31 (6), p.1-9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-eb77ff89f48ca419fe5ea89de22881aea692ee7746222263e46482a5b5a90a103</citedby><cites>FETCH-LOGICAL-c381t-eb77ff89f48ca419fe5ea89de22881aea692ee7746222263e46482a5b5a90a103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Golas, Abhinav</creatorcontrib><creatorcontrib>Narain, Rahul</creatorcontrib><creatorcontrib>Sewall, Jason</creatorcontrib><creatorcontrib>Krajcevski, Pavel</creatorcontrib><creatorcontrib>Dubey, Pradeep</creatorcontrib><creatorcontrib>Lin, Ming</creatorcontrib><title>Large-scale fluid simulation using velocity-vorticity domain decomposition</title><title>ACM transactions on graphics</title><description>Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods. We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles.</description><subject>Computational fluid dynamics</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAURi0EEqUws2ZkMbXjZ0ZU8VQlFpitW-e6MnLiEieV-u9pae9y7nD0DYeQe84eOZdqUQutD3z8pzYXZMaVMtQIbS_JjBnBKBOMX5ObUn4YY1pKPSMfKxg2SIuHhFVIU2yrErspwRhzX00l9ptqhyn7OO7pLg9jPH5VmzuIfdWiz902l3i0b8lVgFTw7sw5-X55_lq-0dXn6_vyaUW9sHykuDYmBNsEaT1I3gRUCLZpsa6t5YCgmxrRGKnrw2mBUktbg1oraBhwJubk4bS7HfLvhGV0XSweU4Ie81QcV0wLK3ijDuripPohlzJgcNshdjDsHWfuWM2dq7lzNfEH-55f6w</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Golas, Abhinav</creator><creator>Narain, Rahul</creator><creator>Sewall, Jason</creator><creator>Krajcevski, Pavel</creator><creator>Dubey, Pradeep</creator><creator>Lin, Ming</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Large-scale fluid simulation using velocity-vorticity domain decomposition</title><author>Golas, Abhinav ; Narain, Rahul ; Sewall, Jason ; Krajcevski, Pavel ; Dubey, Pradeep ; Lin, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-eb77ff89f48ca419fe5ea89de22881aea692ee7746222263e46482a5b5a90a103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational fluid dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golas, Abhinav</creatorcontrib><creatorcontrib>Narain, Rahul</creatorcontrib><creatorcontrib>Sewall, Jason</creatorcontrib><creatorcontrib>Krajcevski, Pavel</creatorcontrib><creatorcontrib>Dubey, Pradeep</creatorcontrib><creatorcontrib>Lin, Ming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golas, Abhinav</au><au>Narain, Rahul</au><au>Sewall, Jason</au><au>Krajcevski, Pavel</au><au>Dubey, Pradeep</au><au>Lin, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale fluid simulation using velocity-vorticity domain decomposition</atitle><jtitle>ACM transactions on graphics</jtitle><date>2012-11</date><risdate>2012</risdate><volume>31</volume><issue>6</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods. We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles.</abstract><doi>10.1145/2366145.2366167</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2012-11, Vol.31 (6), p.1-9
issn 0730-0301
1557-7368
language eng
recordid cdi_proquest_miscellaneous_1506383195
source ACM Digital Library Complete
subjects Computational fluid dynamics
title Large-scale fluid simulation using velocity-vorticity domain decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20fluid%20simulation%20using%20velocity-vorticity%20domain%20decomposition&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Golas,%20Abhinav&rft.date=2012-11&rft.volume=31&rft.issue=6&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/2366145.2366167&rft_dat=%3Cproquest_cross%3E1506383195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506383195&rft_id=info:pmid/&rfr_iscdi=true