A pattern based PSO approach for block matching in motion estimation
Block matching motion estimation is a popular method in developing video coding applications. A new algorithm has been proposed for reducing the number of search points using a pattern based particle swarm optimization (PSO) for motion estimation. The conventional particle swarm optimization has bee...
Gespeichert in:
Veröffentlicht in: | Engineering applications of artificial intelligence 2013-09, Vol.26 (8), p.1811-1817 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1817 |
---|---|
container_issue | 8 |
container_start_page | 1811 |
container_title | Engineering applications of artificial intelligence |
container_volume | 26 |
creator | Alex Pandian, S. Immanuel Bala, G. Josemin Anitha, J. |
description | Block matching motion estimation is a popular method in developing video coding applications. A new algorithm has been proposed for reducing the number of search points using a pattern based particle swarm optimization (PSO) for motion estimation. The conventional particle swarm optimization has been modified to provide accurate solutions in motion estimation problems. This leads to very low computational cost and good estimation accuracy. Due to the center biased nature of the videos, the proposed approach uses an initial pattern to speed up the convergence of the algorithm. Simulation results show that improvements over other fast block matching motion estimation algorithms could be achieved with 31%∼63% of search point reduction, without degradation of image quality. |
doi_str_mv | 10.1016/j.engappai.2013.04.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506382069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197613000602</els_id><sourcerecordid>1506382069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-8d9aab1c2e608fcbb920bab426cf026476cc18cfb09b307e31b7f58bdff88f183</originalsourceid><addsrcrecordid>eNqFkEFPwzAMhSMEEmPwF1COXFqcpk3TG9NggDRpSMA5StJky-iaknRI_HsyDc6cbFnPz88fQtcEcgKE3W5z06_lMEiXF0BoDmUOQE_QhPCaZqxmzSmaQFMVGWlqdo4uYtxCUvCSTdD9DA9yHE3osZLRtPjldYWTWfBSb7D1AavO6w-8k6PeuH6NXY93fnS-xyaOLo1Te4nOrOyiufqtU_S-eHibP2XL1ePzfLbMNC2rMeNtI6UiujAMuNVKNQUoqcqCaQsFK2umNeHaKmgUhdpQompbcdVay7klnE7RzdE3xfvcp_ti56I2XSd74_dRkAoY5QWwJknZUaqDjzEYK4aQ0oZvQUAcsImt-MMmDtgElCJBSYt3x0WTHvlyJoionem1aV0wehStd_9Z_ABklnn1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506382069</pqid></control><display><type>article</type><title>A pattern based PSO approach for block matching in motion estimation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Alex Pandian, S. Immanuel ; Bala, G. Josemin ; Anitha, J.</creator><creatorcontrib>Alex Pandian, S. Immanuel ; Bala, G. Josemin ; Anitha, J.</creatorcontrib><description>Block matching motion estimation is a popular method in developing video coding applications. A new algorithm has been proposed for reducing the number of search points using a pattern based particle swarm optimization (PSO) for motion estimation. The conventional particle swarm optimization has been modified to provide accurate solutions in motion estimation problems. This leads to very low computational cost and good estimation accuracy. Due to the center biased nature of the videos, the proposed approach uses an initial pattern to speed up the convergence of the algorithm. Simulation results show that improvements over other fast block matching motion estimation algorithms could be achieved with 31%∼63% of search point reduction, without degradation of image quality.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2013.04.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Macroblock ; Mean absolute difference ; Motion estimation ; Motion vector ; Particle swarm optimization</subject><ispartof>Engineering applications of artificial intelligence, 2013-09, Vol.26 (8), p.1811-1817</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-8d9aab1c2e608fcbb920bab426cf026476cc18cfb09b307e31b7f58bdff88f183</citedby><cites>FETCH-LOGICAL-c345t-8d9aab1c2e608fcbb920bab426cf026476cc18cfb09b307e31b7f58bdff88f183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engappai.2013.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Alex Pandian, S. Immanuel</creatorcontrib><creatorcontrib>Bala, G. Josemin</creatorcontrib><creatorcontrib>Anitha, J.</creatorcontrib><title>A pattern based PSO approach for block matching in motion estimation</title><title>Engineering applications of artificial intelligence</title><description>Block matching motion estimation is a popular method in developing video coding applications. A new algorithm has been proposed for reducing the number of search points using a pattern based particle swarm optimization (PSO) for motion estimation. The conventional particle swarm optimization has been modified to provide accurate solutions in motion estimation problems. This leads to very low computational cost and good estimation accuracy. Due to the center biased nature of the videos, the proposed approach uses an initial pattern to speed up the convergence of the algorithm. Simulation results show that improvements over other fast block matching motion estimation algorithms could be achieved with 31%∼63% of search point reduction, without degradation of image quality.</description><subject>Algorithms</subject><subject>Macroblock</subject><subject>Mean absolute difference</subject><subject>Motion estimation</subject><subject>Motion vector</subject><subject>Particle swarm optimization</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwzAMhSMEEmPwF1COXFqcpk3TG9NggDRpSMA5StJky-iaknRI_HsyDc6cbFnPz88fQtcEcgKE3W5z06_lMEiXF0BoDmUOQE_QhPCaZqxmzSmaQFMVGWlqdo4uYtxCUvCSTdD9DA9yHE3osZLRtPjldYWTWfBSb7D1AavO6w-8k6PeuH6NXY93fnS-xyaOLo1Te4nOrOyiufqtU_S-eHibP2XL1ePzfLbMNC2rMeNtI6UiujAMuNVKNQUoqcqCaQsFK2umNeHaKmgUhdpQompbcdVay7klnE7RzdE3xfvcp_ti56I2XSd74_dRkAoY5QWwJknZUaqDjzEYK4aQ0oZvQUAcsImt-MMmDtgElCJBSYt3x0WTHvlyJoionem1aV0wehStd_9Z_ABklnn1</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Alex Pandian, S. Immanuel</creator><creator>Bala, G. Josemin</creator><creator>Anitha, J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201309</creationdate><title>A pattern based PSO approach for block matching in motion estimation</title><author>Alex Pandian, S. Immanuel ; Bala, G. Josemin ; Anitha, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-8d9aab1c2e608fcbb920bab426cf026476cc18cfb09b307e31b7f58bdff88f183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Macroblock</topic><topic>Mean absolute difference</topic><topic>Motion estimation</topic><topic>Motion vector</topic><topic>Particle swarm optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alex Pandian, S. Immanuel</creatorcontrib><creatorcontrib>Bala, G. Josemin</creatorcontrib><creatorcontrib>Anitha, J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alex Pandian, S. Immanuel</au><au>Bala, G. Josemin</au><au>Anitha, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A pattern based PSO approach for block matching in motion estimation</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2013-09</date><risdate>2013</risdate><volume>26</volume><issue>8</issue><spage>1811</spage><epage>1817</epage><pages>1811-1817</pages><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>Block matching motion estimation is a popular method in developing video coding applications. A new algorithm has been proposed for reducing the number of search points using a pattern based particle swarm optimization (PSO) for motion estimation. The conventional particle swarm optimization has been modified to provide accurate solutions in motion estimation problems. This leads to very low computational cost and good estimation accuracy. Due to the center biased nature of the videos, the proposed approach uses an initial pattern to speed up the convergence of the algorithm. Simulation results show that improvements over other fast block matching motion estimation algorithms could be achieved with 31%∼63% of search point reduction, without degradation of image quality.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2013.04.003</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-1976 |
ispartof | Engineering applications of artificial intelligence, 2013-09, Vol.26 (8), p.1811-1817 |
issn | 0952-1976 1873-6769 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506382069 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Macroblock Mean absolute difference Motion estimation Motion vector Particle swarm optimization |
title | A pattern based PSO approach for block matching in motion estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20pattern%20based%20PSO%20approach%20for%20block%20matching%20in%20motion%20estimation&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Alex%20Pandian,%20S.%20Immanuel&rft.date=2013-09&rft.volume=26&rft.issue=8&rft.spage=1811&rft.epage=1817&rft.pages=1811-1817&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2013.04.003&rft_dat=%3Cproquest_cross%3E1506382069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506382069&rft_id=info:pmid/&rft_els_id=S0952197613000602&rfr_iscdi=true |