Concurrent multiresolution finite element: formulation and algorithmic aspects

A multiresolution concurrent theory for heterogenous materials is proposed with novel macro scale and micro scale constitutive laws that include the plastic yield function at different length scales. In contrast to the conventional plasticity, the plastic flow at the micro zone depends on the plasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2013-12, Vol.52 (6), p.1265-1279
Hauptverfasser: Tang, Shan, Kopacz, Adrian M., Chan O’Keeffe, Stephanie, Olson, Gregory B., Liu, Wing Kam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1279
container_issue 6
container_start_page 1265
container_title Computational mechanics
container_volume 52
creator Tang, Shan
Kopacz, Adrian M.
Chan O’Keeffe, Stephanie
Olson, Gregory B.
Liu, Wing Kam
description A multiresolution concurrent theory for heterogenous materials is proposed with novel macro scale and micro scale constitutive laws that include the plastic yield function at different length scales. In contrast to the conventional plasticity, the plastic flow at the micro zone depends on the plastic strain gradient. The consistency condition at the macro and micro zones can result in a set of algebraic equations. Using appropriate boundary conditions, the finite element discretization was derived from a variational principle with the extra degrees of freedom for the micro zones. In collaboration with LSTC Inc, the degrees of freedom at the micro zone and their related history variables have been augmented in LS-DYNA. The 3D multiresolution theory has been implemented. Shear band propagation and the large scale simulation of a shear driven ductile fracture process were carried out. Our results show that the proposed multiresolution theory in combination with the parallel implementation into LS-DYNA can capture the effects of the microstructure on shear band propagation and allows for realistic modeling of ductile fracture process.
doi_str_mv 10.1007/s00466-013-0874-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506381486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A352232233</galeid><sourcerecordid>A352232233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-389a410e856f86bf068ddc9ac7af0c4aa98dc63bb35c3ce28103a474ff1fc78d3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVpoNskPyA3Qy_twenow7LcW1jSNBBS6MdZaOXRVsGWtpIM6b-vNi6UFIoEgpnnGUa8hFxQuKQA_fsMIKRsgfIWVC9a_oJsqOCshYGJl2QDtFdtL_vuFXmd8wMA7RTvNuR-G4NdUsJQmnmZik-Y47QUH0PjfPAFG5xwru0PjYupIuapZ8LYmGkfky8_Zm8bkw9oSz4jJ85MGc__vKfk-8frb9tP7d3nm9vt1V1rBWOl5WowggKqTjoldw6kGkc7GNsbB1YYM6jRSr7b8c5yi0xR4Eb0wjnqbK9GfkrernMPKf5cMBc9-2xxmkzAuGRNO5BcUaFkRd_8gz7EJYW6nWZMAnSMDVCpy5Xamwm1Dy6WZGw9I9bvxYDO1_oVrzSvl1fh3TOhMgUfy94sOevbr1-es3RlbYo5J3T6kPxs0i9NQR_j02t8usanj_Hpo8NWJ1c27DH9Xfv_0m87P5zE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260052290</pqid></control><display><type>article</type><title>Concurrent multiresolution finite element: formulation and algorithmic aspects</title><source>Springer Nature - Complete Springer Journals</source><creator>Tang, Shan ; Kopacz, Adrian M. ; Chan O’Keeffe, Stephanie ; Olson, Gregory B. ; Liu, Wing Kam</creator><creatorcontrib>Tang, Shan ; Kopacz, Adrian M. ; Chan O’Keeffe, Stephanie ; Olson, Gregory B. ; Liu, Wing Kam</creatorcontrib><description>A multiresolution concurrent theory for heterogenous materials is proposed with novel macro scale and micro scale constitutive laws that include the plastic yield function at different length scales. In contrast to the conventional plasticity, the plastic flow at the micro zone depends on the plastic strain gradient. The consistency condition at the macro and micro zones can result in a set of algebraic equations. Using appropriate boundary conditions, the finite element discretization was derived from a variational principle with the extra degrees of freedom for the micro zones. In collaboration with LSTC Inc, the degrees of freedom at the micro zone and their related history variables have been augmented in LS-DYNA. The 3D multiresolution theory has been implemented. Shear band propagation and the large scale simulation of a shear driven ductile fracture process were carried out. Our results show that the proposed multiresolution theory in combination with the parallel implementation into LS-DYNA can capture the effects of the microstructure on shear band propagation and allows for realistic modeling of ductile fracture process.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-013-0874-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Classical and Continuum Physics ; Computational Science and Engineering ; Computer simulation ; Crack propagation ; Degrees of freedom ; Ductile fracture ; Edge dislocations ; Engineering ; Finite element method ; Mathematical analysis ; Mathematical models ; Original Paper ; Plastic deformation ; Plastic flow ; Shear bands ; Slip bands ; Theoretical and Applied Mechanics ; Three dimensional</subject><ispartof>Computational mechanics, 2013-12, Vol.52 (6), p.1265-1279</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Computational Mechanics is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-389a410e856f86bf068ddc9ac7af0c4aa98dc63bb35c3ce28103a474ff1fc78d3</citedby><cites>FETCH-LOGICAL-c422t-389a410e856f86bf068ddc9ac7af0c4aa98dc63bb35c3ce28103a474ff1fc78d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-013-0874-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-013-0874-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Tang, Shan</creatorcontrib><creatorcontrib>Kopacz, Adrian M.</creatorcontrib><creatorcontrib>Chan O’Keeffe, Stephanie</creatorcontrib><creatorcontrib>Olson, Gregory B.</creatorcontrib><creatorcontrib>Liu, Wing Kam</creatorcontrib><title>Concurrent multiresolution finite element: formulation and algorithmic aspects</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A multiresolution concurrent theory for heterogenous materials is proposed with novel macro scale and micro scale constitutive laws that include the plastic yield function at different length scales. In contrast to the conventional plasticity, the plastic flow at the micro zone depends on the plastic strain gradient. The consistency condition at the macro and micro zones can result in a set of algebraic equations. Using appropriate boundary conditions, the finite element discretization was derived from a variational principle with the extra degrees of freedom for the micro zones. In collaboration with LSTC Inc, the degrees of freedom at the micro zone and their related history variables have been augmented in LS-DYNA. The 3D multiresolution theory has been implemented. Shear band propagation and the large scale simulation of a shear driven ductile fracture process were carried out. Our results show that the proposed multiresolution theory in combination with the parallel implementation into LS-DYNA can capture the effects of the microstructure on shear band propagation and allows for realistic modeling of ductile fracture process.</description><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Degrees of freedom</subject><subject>Ductile fracture</subject><subject>Edge dislocations</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Plastic deformation</subject><subject>Plastic flow</subject><subject>Shear bands</subject><subject>Slip bands</subject><subject>Theoretical and Applied Mechanics</subject><subject>Three dimensional</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU1r3DAQhkVpoNskPyA3Qy_twenow7LcW1jSNBBS6MdZaOXRVsGWtpIM6b-vNi6UFIoEgpnnGUa8hFxQuKQA_fsMIKRsgfIWVC9a_oJsqOCshYGJl2QDtFdtL_vuFXmd8wMA7RTvNuR-G4NdUsJQmnmZik-Y47QUH0PjfPAFG5xwru0PjYupIuapZ8LYmGkfky8_Zm8bkw9oSz4jJ85MGc__vKfk-8frb9tP7d3nm9vt1V1rBWOl5WowggKqTjoldw6kGkc7GNsbB1YYM6jRSr7b8c5yi0xR4Eb0wjnqbK9GfkrernMPKf5cMBc9-2xxmkzAuGRNO5BcUaFkRd_8gz7EJYW6nWZMAnSMDVCpy5Xamwm1Dy6WZGw9I9bvxYDO1_oVrzSvl1fh3TOhMgUfy94sOevbr1-es3RlbYo5J3T6kPxs0i9NQR_j02t8usanj_Hpo8NWJ1c27DH9Xfv_0m87P5zE</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Tang, Shan</creator><creator>Kopacz, Adrian M.</creator><creator>Chan O’Keeffe, Stephanie</creator><creator>Olson, Gregory B.</creator><creator>Liu, Wing Kam</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Concurrent multiresolution finite element: formulation and algorithmic aspects</title><author>Tang, Shan ; Kopacz, Adrian M. ; Chan O’Keeffe, Stephanie ; Olson, Gregory B. ; Liu, Wing Kam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-389a410e856f86bf068ddc9ac7af0c4aa98dc63bb35c3ce28103a474ff1fc78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Degrees of freedom</topic><topic>Ductile fracture</topic><topic>Edge dislocations</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Plastic deformation</topic><topic>Plastic flow</topic><topic>Shear bands</topic><topic>Slip bands</topic><topic>Theoretical and Applied Mechanics</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Shan</creatorcontrib><creatorcontrib>Kopacz, Adrian M.</creatorcontrib><creatorcontrib>Chan O’Keeffe, Stephanie</creatorcontrib><creatorcontrib>Olson, Gregory B.</creatorcontrib><creatorcontrib>Liu, Wing Kam</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Shan</au><au>Kopacz, Adrian M.</au><au>Chan O’Keeffe, Stephanie</au><au>Olson, Gregory B.</au><au>Liu, Wing Kam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrent multiresolution finite element: formulation and algorithmic aspects</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>52</volume><issue>6</issue><spage>1265</spage><epage>1279</epage><pages>1265-1279</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A multiresolution concurrent theory for heterogenous materials is proposed with novel macro scale and micro scale constitutive laws that include the plastic yield function at different length scales. In contrast to the conventional plasticity, the plastic flow at the micro zone depends on the plastic strain gradient. The consistency condition at the macro and micro zones can result in a set of algebraic equations. Using appropriate boundary conditions, the finite element discretization was derived from a variational principle with the extra degrees of freedom for the micro zones. In collaboration with LSTC Inc, the degrees of freedom at the micro zone and their related history variables have been augmented in LS-DYNA. The 3D multiresolution theory has been implemented. Shear band propagation and the large scale simulation of a shear driven ductile fracture process were carried out. Our results show that the proposed multiresolution theory in combination with the parallel implementation into LS-DYNA can capture the effects of the microstructure on shear band propagation and allows for realistic modeling of ductile fracture process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-013-0874-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2013-12, Vol.52 (6), p.1265-1279
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_miscellaneous_1506381486
source Springer Nature - Complete Springer Journals
subjects Boundary conditions
Classical and Continuum Physics
Computational Science and Engineering
Computer simulation
Crack propagation
Degrees of freedom
Ductile fracture
Edge dislocations
Engineering
Finite element method
Mathematical analysis
Mathematical models
Original Paper
Plastic deformation
Plastic flow
Shear bands
Slip bands
Theoretical and Applied Mechanics
Three dimensional
title Concurrent multiresolution finite element: formulation and algorithmic aspects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrent%20multiresolution%20finite%20element:%20formulation%20and%20algorithmic%20aspects&rft.jtitle=Computational%20mechanics&rft.au=Tang,%20Shan&rft.date=2013-12-01&rft.volume=52&rft.issue=6&rft.spage=1265&rft.epage=1279&rft.pages=1265-1279&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-013-0874-3&rft_dat=%3Cgale_proqu%3EA352232233%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260052290&rft_id=info:pmid/&rft_galeid=A352232233&rfr_iscdi=true