Weighted estimates for commutators of vector-valued maximal multilinear operators
Let T∗ be the maximal multilinear Calderón–Zygmund operator defined by T∗(f→)(x)=supδ>0|Tδ(f1,…,fm)(x)|, and Tq∗(f→) be the vector-valued version of T∗, Tq∗(f→)(x)=(∑k=1∞|T∗(f1k,…,fmk)(x)|q)1/q, where Tδ are the smooth truncations of the multilinear singular integral operator T. In this paper, we...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2014-02, Vol.96, p.96-108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let T∗ be the maximal multilinear Calderón–Zygmund operator defined by T∗(f→)(x)=supδ>0|Tδ(f1,…,fm)(x)|, and Tq∗(f→) be the vector-valued version of T∗, Tq∗(f→)(x)=(∑k=1∞|T∗(f1k,…,fmk)(x)|q)1/q, where Tδ are the smooth truncations of the multilinear singular integral operator T. In this paper, we consider weighted norm inequalities for the iterated commutators of vector-valued maximal multilinear operators Tq∗(f→). The weighted strong type and weighted end-point weak type estimates for the iterated commutators of Tq∗(f→) were established respectively. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2013.11.003 |