Weighted estimates for commutators of vector-valued maximal multilinear operators

Let T∗ be the maximal multilinear Calderón–Zygmund operator defined by T∗(f→)(x)=supδ>0|Tδ(f1,…,fm)(x)|, and Tq∗(f→) be the vector-valued version of T∗, Tq∗(f→)(x)=(∑k=1∞|T∗(f1k,…,fmk)(x)|q)1/q, where Tδ are the smooth truncations of the multilinear singular integral operator T. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2014-02, Vol.96, p.96-108
Hauptverfasser: Si, Zengyan, Xue, Qingying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let T∗ be the maximal multilinear Calderón–Zygmund operator defined by T∗(f→)(x)=supδ>0|Tδ(f1,…,fm)(x)|, and Tq∗(f→) be the vector-valued version of T∗, Tq∗(f→)(x)=(∑k=1∞|T∗(f1k,…,fmk)(x)|q)1/q, where Tδ are the smooth truncations of the multilinear singular integral operator T. In this paper, we consider weighted norm inequalities for the iterated commutators of vector-valued maximal multilinear operators Tq∗(f→). The weighted strong type and weighted end-point weak type estimates for the iterated commutators of Tq∗(f→) were established respectively.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2013.11.003