MnO nanorods on graphene as an anode material for high capacity lithium ion batteries

The MnO/graphene hybrid nanocomposites were prepared by an in situ reduction method. The MnO 2 nanorods were attached on the graphene oxides (GOs) to form the MnO 2 /GO nanocomposites, which were reduced to the MnO/graphene hybrid under argon atmosphere. As the anode material for the lithium ion bat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2014-02, Vol.49 (4), p.1861-1867
Hauptverfasser: Wu, Tonghua, Tu, Feiyue, Liu, Suqin, Zhuang, Shuxin, Jin, Guanhua, Pan, Chunyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1867
container_issue 4
container_start_page 1861
container_title Journal of materials science
container_volume 49
creator Wu, Tonghua
Tu, Feiyue
Liu, Suqin
Zhuang, Shuxin
Jin, Guanhua
Pan, Chunyue
description The MnO/graphene hybrid nanocomposites were prepared by an in situ reduction method. The MnO 2 nanorods were attached on the graphene oxides (GOs) to form the MnO 2 /GO nanocomposites, which were reduced to the MnO/graphene hybrid under argon atmosphere. As the anode material for the lithium ion batteries, the MnO/graphene electrodes delivered a high initial charge capacity up to 747 mAh g −1 and a stable capacity of 705.8 mAh g −1 after 100 cycles, which is much superior to pure MnO with initial charge capacity of 456 mAh g −1 and the stable capacity of 95.6 mAh g −1 after 100 cycles. The scanning electron microscope images of the MnO/graphene hybrid nanocomposites after cycling demonstrated that the graphene could prevent the MnO from aggregating during the charge/discharge process.
doi_str_mv 10.1007/s10853-013-7874-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506379279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A363901092</galeid><sourcerecordid>A363901092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-143c11f38979cff3e40cfac30d17f87a61ec45b7fa52ad9bb13caaf344e2ab0b3</originalsourceid><addsrcrecordid>eNp1kV1rFTEQhoMoeKz-AO8C3ujF1snHnuxelmK1UCmovQ6z2WRPym5yTLLQ_ntzWKFUkAwEhucZXngJec_gnAGoz5lB14oGmGhUp2TTvSA71irRyA7ES7ID4Lzhcs9ekzc53wNAqzjbkbvv4ZYGDDHFMdMY6JTweLDBUswUQ504WrpgscnjTF1M9OCnAzV4ROPLI519Ofh1ob66A5YTZ_Nb8srhnO27v_8Zubv68uvyW3Nz-_X68uKmMbLtS8OkMIw50fWqN84JK8E4NAJGplyncM9sBQflsOU49sPAhEF0QkrLcYBBnJGP291jir9Xm4tefDZ2njHYuGbNWtgL1XPVV_TDP-h9XFOo6TTnba8kqK6r1PlGTThb7YOLJaGpb7SLNzFY5-v-QuxFDwx6XoVPz4TKFPtQJlxz1tc_fzxn2caaFHNO1ulj8gumR81An1rUW4u6tqhPLepTIL45ubJhsukp9v-lP7J-nio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259740788</pqid></control><display><type>article</type><title>MnO nanorods on graphene as an anode material for high capacity lithium ion batteries</title><source>SpringerLink Journals (MCLS)</source><creator>Wu, Tonghua ; Tu, Feiyue ; Liu, Suqin ; Zhuang, Shuxin ; Jin, Guanhua ; Pan, Chunyue</creator><creatorcontrib>Wu, Tonghua ; Tu, Feiyue ; Liu, Suqin ; Zhuang, Shuxin ; Jin, Guanhua ; Pan, Chunyue</creatorcontrib><description>The MnO/graphene hybrid nanocomposites were prepared by an in situ reduction method. The MnO 2 nanorods were attached on the graphene oxides (GOs) to form the MnO 2 /GO nanocomposites, which were reduced to the MnO/graphene hybrid under argon atmosphere. As the anode material for the lithium ion batteries, the MnO/graphene electrodes delivered a high initial charge capacity up to 747 mAh g −1 and a stable capacity of 705.8 mAh g −1 after 100 cycles, which is much superior to pure MnO with initial charge capacity of 456 mAh g −1 and the stable capacity of 95.6 mAh g −1 after 100 cycles. The scanning electron microscope images of the MnO/graphene hybrid nanocomposites after cycling demonstrated that the graphene could prevent the MnO from aggregating during the charge/discharge process.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7874-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Anodes ; Argon ; Batteries ; Characterization and Evaluation of Materials ; Charge ; Charge materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electrode materials ; Graphene ; Lithium ; Lithium-ion batteries ; Manganese dioxide ; Manganese oxides ; Materials Science ; Nanocomposites ; Nanorods ; Oxides ; Polymer Sciences ; Rechargeable batteries ; Scanning electron microscopy ; Solid Mechanics</subject><ispartof>Journal of materials science, 2014-02, Vol.49 (4), p.1861-1867</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-143c11f38979cff3e40cfac30d17f87a61ec45b7fa52ad9bb13caaf344e2ab0b3</citedby><cites>FETCH-LOGICAL-c459t-143c11f38979cff3e40cfac30d17f87a61ec45b7fa52ad9bb13caaf344e2ab0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-013-7874-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-013-7874-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wu, Tonghua</creatorcontrib><creatorcontrib>Tu, Feiyue</creatorcontrib><creatorcontrib>Liu, Suqin</creatorcontrib><creatorcontrib>Zhuang, Shuxin</creatorcontrib><creatorcontrib>Jin, Guanhua</creatorcontrib><creatorcontrib>Pan, Chunyue</creatorcontrib><title>MnO nanorods on graphene as an anode material for high capacity lithium ion batteries</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The MnO/graphene hybrid nanocomposites were prepared by an in situ reduction method. The MnO 2 nanorods were attached on the graphene oxides (GOs) to form the MnO 2 /GO nanocomposites, which were reduced to the MnO/graphene hybrid under argon atmosphere. As the anode material for the lithium ion batteries, the MnO/graphene electrodes delivered a high initial charge capacity up to 747 mAh g −1 and a stable capacity of 705.8 mAh g −1 after 100 cycles, which is much superior to pure MnO with initial charge capacity of 456 mAh g −1 and the stable capacity of 95.6 mAh g −1 after 100 cycles. The scanning electron microscope images of the MnO/graphene hybrid nanocomposites after cycling demonstrated that the graphene could prevent the MnO from aggregating during the charge/discharge process.</description><subject>Anodes</subject><subject>Argon</subject><subject>Batteries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge</subject><subject>Charge materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrode materials</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manganese dioxide</subject><subject>Manganese oxides</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanorods</subject><subject>Oxides</subject><subject>Polymer Sciences</subject><subject>Rechargeable batteries</subject><subject>Scanning electron microscopy</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kV1rFTEQhoMoeKz-AO8C3ujF1snHnuxelmK1UCmovQ6z2WRPym5yTLLQ_ntzWKFUkAwEhucZXngJec_gnAGoz5lB14oGmGhUp2TTvSA71irRyA7ES7ID4Lzhcs9ekzc53wNAqzjbkbvv4ZYGDDHFMdMY6JTweLDBUswUQ504WrpgscnjTF1M9OCnAzV4ROPLI519Ofh1ob66A5YTZ_Nb8srhnO27v_8Zubv68uvyW3Nz-_X68uKmMbLtS8OkMIw50fWqN84JK8E4NAJGplyncM9sBQflsOU49sPAhEF0QkrLcYBBnJGP291jir9Xm4tefDZ2njHYuGbNWtgL1XPVV_TDP-h9XFOo6TTnba8kqK6r1PlGTThb7YOLJaGpb7SLNzFY5-v-QuxFDwx6XoVPz4TKFPtQJlxz1tc_fzxn2caaFHNO1ulj8gumR81An1rUW4u6tqhPLepTIL45ubJhsukp9v-lP7J-nio</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Wu, Tonghua</creator><creator>Tu, Feiyue</creator><creator>Liu, Suqin</creator><creator>Zhuang, Shuxin</creator><creator>Jin, Guanhua</creator><creator>Pan, Chunyue</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140201</creationdate><title>MnO nanorods on graphene as an anode material for high capacity lithium ion batteries</title><author>Wu, Tonghua ; Tu, Feiyue ; Liu, Suqin ; Zhuang, Shuxin ; Jin, Guanhua ; Pan, Chunyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-143c11f38979cff3e40cfac30d17f87a61ec45b7fa52ad9bb13caaf344e2ab0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anodes</topic><topic>Argon</topic><topic>Batteries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge</topic><topic>Charge materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrode materials</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manganese dioxide</topic><topic>Manganese oxides</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanorods</topic><topic>Oxides</topic><topic>Polymer Sciences</topic><topic>Rechargeable batteries</topic><topic>Scanning electron microscopy</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tonghua</creatorcontrib><creatorcontrib>Tu, Feiyue</creatorcontrib><creatorcontrib>Liu, Suqin</creatorcontrib><creatorcontrib>Zhuang, Shuxin</creatorcontrib><creatorcontrib>Jin, Guanhua</creatorcontrib><creatorcontrib>Pan, Chunyue</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tonghua</au><au>Tu, Feiyue</au><au>Liu, Suqin</au><au>Zhuang, Shuxin</au><au>Jin, Guanhua</au><au>Pan, Chunyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MnO nanorods on graphene as an anode material for high capacity lithium ion batteries</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>49</volume><issue>4</issue><spage>1861</spage><epage>1867</epage><pages>1861-1867</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The MnO/graphene hybrid nanocomposites were prepared by an in situ reduction method. The MnO 2 nanorods were attached on the graphene oxides (GOs) to form the MnO 2 /GO nanocomposites, which were reduced to the MnO/graphene hybrid under argon atmosphere. As the anode material for the lithium ion batteries, the MnO/graphene electrodes delivered a high initial charge capacity up to 747 mAh g −1 and a stable capacity of 705.8 mAh g −1 after 100 cycles, which is much superior to pure MnO with initial charge capacity of 456 mAh g −1 and the stable capacity of 95.6 mAh g −1 after 100 cycles. The scanning electron microscope images of the MnO/graphene hybrid nanocomposites after cycling demonstrated that the graphene could prevent the MnO from aggregating during the charge/discharge process.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7874-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2014-02, Vol.49 (4), p.1861-1867
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1506379279
source SpringerLink Journals (MCLS)
subjects Anodes
Argon
Batteries
Characterization and Evaluation of Materials
Charge
Charge materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Electrode materials
Graphene
Lithium
Lithium-ion batteries
Manganese dioxide
Manganese oxides
Materials Science
Nanocomposites
Nanorods
Oxides
Polymer Sciences
Rechargeable batteries
Scanning electron microscopy
Solid Mechanics
title MnO nanorods on graphene as an anode material for high capacity lithium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MnO%20nanorods%20on%20graphene%20as%20an%20anode%20material%20for%20high%20capacity%20lithium%20ion%20batteries&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wu,%20Tonghua&rft.date=2014-02-01&rft.volume=49&rft.issue=4&rft.spage=1861&rft.epage=1867&rft.pages=1861-1867&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7874-8&rft_dat=%3Cgale_proqu%3EA363901092%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259740788&rft_id=info:pmid/&rft_galeid=A363901092&rfr_iscdi=true