Doubly-Selective Channel Estimation Using Superimposed Training and Weighted First-Order Statistics

Doubly-selective channel estimation using superimposed training and complex exponential basis expansion model is considered. By taking a weighted averaging operation of the received data, a weighted first-order statistical estimator is proposed, where the time-varying channel estimation is reduced t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2013-12, Vol.73 (3), p.767-778
Hauptverfasser: Dou, Gaoqi, Zhang, Xianfeng, He, Chunquan, Gao, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 778
container_issue 3
container_start_page 767
container_title Wireless personal communications
container_volume 73
creator Dou, Gaoqi
Zhang, Xianfeng
He, Chunquan
Gao, Jun
description Doubly-selective channel estimation using superimposed training and complex exponential basis expansion model is considered. By taking a weighted averaging operation of the received data, a weighted first-order statistical estimator is proposed, where the time-varying channel estimation is reduced to the simple average-based solution of time-invariant coefficients and the dominant effect of information-induced interference on channel estimation can be suppressed. To further improve the estimation performance with a limited training power, a joint iterative channel estimation and symbol detection scheme is developed where the detected symbol is exploited to enhance estimation performance instead of being viewed as interference. Theoretical analysis and simulation results show that the proposed scheme is superior to data-dependent superimposed training scheme and competitive with the conventional time-multiplexed training in terms of symbol error rate over doubly-selective channels.
doi_str_mv 10.1007/s11277-013-1215-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506377320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506377320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e34a56901e1670a7d5fcc9e7693b9d4895fcbe7745c86db9c03f4351e959c2be3</originalsourceid><addsrcrecordid>eNp9kE9P4zAQxS0E0hbYD7C3XJC4ePHYSRwfUfmzSEgcCtq9WY4zKUapUzwJUr_9uiriyGk0M-_3pPcY-wXiNwihrwhAas0FKA4SKt4csQVUWvJGlf-O2UIYaXgtQf5gp0RvQmTKyAXzN-PcDju-wgH9FD6wWL66GHEobmkKGzeFMRYvFOK6WM1bTGGzHQm74jm5EPdXF7viL4b165SvdyHRxJ9Sh6lYTRnOHp7O2UnvBsKfn_OMvdzdPi__8Men-4fl9SP3qoKJoypdVRsBCLUWTndV771BXRvVmq5sTN5b1LqsfFN3rfFC9WUm0VTGyxbVGbs8-G7T-D4jTXYTyOMwuIjjTBYqUSutlRRZCgepTyNRwt5uczSXdhaE3RdqD4XaXKjdF2qbzFx82jvybuiTiz7QFygbIcEAZJ086Ci_4hqTfRvnFHPyb8z_A3IwhoY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506377320</pqid></control><display><type>article</type><title>Doubly-Selective Channel Estimation Using Superimposed Training and Weighted First-Order Statistics</title><source>Springer Nature - Complete Springer Journals</source><creator>Dou, Gaoqi ; Zhang, Xianfeng ; He, Chunquan ; Gao, Jun</creator><creatorcontrib>Dou, Gaoqi ; Zhang, Xianfeng ; He, Chunquan ; Gao, Jun</creatorcontrib><description>Doubly-selective channel estimation using superimposed training and complex exponential basis expansion model is considered. By taking a weighted averaging operation of the received data, a weighted first-order statistical estimator is proposed, where the time-varying channel estimation is reduced to the simple average-based solution of time-invariant coefficients and the dominant effect of information-induced interference on channel estimation can be suppressed. To further improve the estimation performance with a limited training power, a joint iterative channel estimation and symbol detection scheme is developed where the detected symbol is exploited to enhance estimation performance instead of being viewed as interference. Theoretical analysis and simulation results show that the proposed scheme is superior to data-dependent superimposed training scheme and competitive with the conventional time-multiplexed training in terms of symbol error rate over doubly-selective channels.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-013-1215-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Channels ; Communications Engineering ; Computer Communication Networks ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Engineering ; Exact sciences and technology ; Networks ; Radiocommunications ; Signal,Image and Speech Processing ; Software ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments)</subject><ispartof>Wireless personal communications, 2013-12, Vol.73 (3), p.767-778</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e34a56901e1670a7d5fcc9e7693b9d4895fcbe7745c86db9c03f4351e959c2be3</citedby><cites>FETCH-LOGICAL-c351t-e34a56901e1670a7d5fcc9e7693b9d4895fcbe7745c86db9c03f4351e959c2be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-013-1215-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-013-1215-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28021911$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dou, Gaoqi</creatorcontrib><creatorcontrib>Zhang, Xianfeng</creatorcontrib><creatorcontrib>He, Chunquan</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><title>Doubly-Selective Channel Estimation Using Superimposed Training and Weighted First-Order Statistics</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>Doubly-selective channel estimation using superimposed training and complex exponential basis expansion model is considered. By taking a weighted averaging operation of the received data, a weighted first-order statistical estimator is proposed, where the time-varying channel estimation is reduced to the simple average-based solution of time-invariant coefficients and the dominant effect of information-induced interference on channel estimation can be suppressed. To further improve the estimation performance with a limited training power, a joint iterative channel estimation and symbol detection scheme is developed where the detected symbol is exploited to enhance estimation performance instead of being viewed as interference. Theoretical analysis and simulation results show that the proposed scheme is superior to data-dependent superimposed training scheme and competitive with the conventional time-multiplexed training in terms of symbol error rate over doubly-selective channels.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Networks</subject><subject>Radiocommunications</subject><subject>Signal,Image and Speech Processing</subject><subject>Software</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P4zAQxS0E0hbYD7C3XJC4ePHYSRwfUfmzSEgcCtq9WY4zKUapUzwJUr_9uiriyGk0M-_3pPcY-wXiNwihrwhAas0FKA4SKt4csQVUWvJGlf-O2UIYaXgtQf5gp0RvQmTKyAXzN-PcDju-wgH9FD6wWL66GHEobmkKGzeFMRYvFOK6WM1bTGGzHQm74jm5EPdXF7viL4b165SvdyHRxJ9Sh6lYTRnOHp7O2UnvBsKfn_OMvdzdPi__8Men-4fl9SP3qoKJoypdVRsBCLUWTndV771BXRvVmq5sTN5b1LqsfFN3rfFC9WUm0VTGyxbVGbs8-G7T-D4jTXYTyOMwuIjjTBYqUSutlRRZCgepTyNRwt5uczSXdhaE3RdqD4XaXKjdF2qbzFx82jvybuiTiz7QFygbIcEAZJ086Ci_4hqTfRvnFHPyb8z_A3IwhoY</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Dou, Gaoqi</creator><creator>Zhang, Xianfeng</creator><creator>He, Chunquan</creator><creator>Gao, Jun</creator><general>Springer US</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Doubly-Selective Channel Estimation Using Superimposed Training and Weighted First-Order Statistics</title><author>Dou, Gaoqi ; Zhang, Xianfeng ; He, Chunquan ; Gao, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e34a56901e1670a7d5fcc9e7693b9d4895fcbe7745c86db9c03f4351e959c2be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Networks</topic><topic>Radiocommunications</topic><topic>Signal,Image and Speech Processing</topic><topic>Software</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Gaoqi</creatorcontrib><creatorcontrib>Zhang, Xianfeng</creatorcontrib><creatorcontrib>He, Chunquan</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Gaoqi</au><au>Zhang, Xianfeng</au><au>He, Chunquan</au><au>Gao, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doubly-Selective Channel Estimation Using Superimposed Training and Weighted First-Order Statistics</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>73</volume><issue>3</issue><spage>767</spage><epage>778</epage><pages>767-778</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>Doubly-selective channel estimation using superimposed training and complex exponential basis expansion model is considered. By taking a weighted averaging operation of the received data, a weighted first-order statistical estimator is proposed, where the time-varying channel estimation is reduced to the simple average-based solution of time-invariant coefficients and the dominant effect of information-induced interference on channel estimation can be suppressed. To further improve the estimation performance with a limited training power, a joint iterative channel estimation and symbol detection scheme is developed where the detected symbol is exploited to enhance estimation performance instead of being viewed as interference. Theoretical analysis and simulation results show that the proposed scheme is superior to data-dependent superimposed training scheme and competitive with the conventional time-multiplexed training in terms of symbol error rate over doubly-selective channels.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11277-013-1215-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2013-12, Vol.73 (3), p.767-778
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_miscellaneous_1506377320
source Springer Nature - Complete Springer Journals
subjects Applied sciences
Channels
Communications Engineering
Computer Communication Networks
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Engineering
Exact sciences and technology
Networks
Radiocommunications
Signal,Image and Speech Processing
Software
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
title Doubly-Selective Channel Estimation Using Superimposed Training and Weighted First-Order Statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doubly-Selective%20Channel%20Estimation%20Using%20Superimposed%20Training%20and%20Weighted%20First-Order%20Statistics&rft.jtitle=Wireless%20personal%20communications&rft.au=Dou,%20Gaoqi&rft.date=2013-12-01&rft.volume=73&rft.issue=3&rft.spage=767&rft.epage=778&rft.pages=767-778&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-013-1215-8&rft_dat=%3Cproquest_cross%3E1506377320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506377320&rft_id=info:pmid/&rfr_iscdi=true