Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality

This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of ruminant-derived bonemeal in animal feed is tested as part of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2014-01, Vol.18 (1), p.25-42
Hauptverfasser: Wilcox, Philip, Horton, Timothy M., Youn, Eunseog, Jeong, Myong K., Tate, Derrick, Herrman, Timothy, Nansen, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 25
container_title Intelligent data analysis
container_volume 18
creator Wilcox, Philip
Horton, Timothy M.
Youn, Eunseog
Jeong, Myong K.
Tate, Derrick
Herrman, Timothy
Nansen, Christian
description This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of ruminant-derived bonemeal in animal feed is tested as part of an on-going research into development of automated, reliable fast and cost-effective quality control systems. HSI cubes contain spectral reflectance in both spatial dimensions and spectral bands. Support vector machines are used for classification of data in various domains. Selecting a subset of the spectral bands speeds processing and increases accuracy by reducing over-fitting. We developed two methods utilizing divergence values for selecting spectral band sets, 1) evolutionary search method and 2) divergence-based recursive feature elimination approach.
doi_str_mv 10.3233/IDA-130626
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506375812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3233_IDA-130626</sage_id><sourcerecordid>1506375812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-220507a6ea8769a9b270a55922af6eb998e010dfc34844cc7731df601989a7e3</originalsourceid><addsrcrecordid>eNptkMlOwzAQQCMEEuuFL_ANhBTwksTJsSplkZC49MAtmrqT1pVjB9sB9Sf4ZhyVI6dZ9GY087LsmtF7wYV4eH2c5UzQildH2RkrJcsLxuvjlNO6zotKfpxm5yHsKKUFp8VZ9rP4cmaM2lnwe-Kx0xZ7tJHAMHgHaouBdM6TFdg1CWhQTSxxHdnuB_RhSA0PhugeNgn91nE7jRqtYAIDiY7AGF2fSkV6Z3V0XtvNtAFsmjKkQ1yTzxGMjvvL7KQDE_DqL15ky6fFcv6Sv70_v85nb7kSgsecc1pSCRVCLasGmhWXFMqy4Ry6CldNUyNldN0pUdRFoZSUgq27irKmbkCiuMhuD2vTj58jhtj2Oig0Biy6MbSspJWQZc14Qu8OqPIuhCSoHXw62-9bRtvJeZuctwfnCb45wCHZaHdu9DZ98R_5C5Vmg4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506375812</pqid></control><display><type>article</type><title>Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality</title><source>Business Source Complete</source><creator>Wilcox, Philip ; Horton, Timothy M. ; Youn, Eunseog ; Jeong, Myong K. ; Tate, Derrick ; Herrman, Timothy ; Nansen, Christian</creator><creatorcontrib>Wilcox, Philip ; Horton, Timothy M. ; Youn, Eunseog ; Jeong, Myong K. ; Tate, Derrick ; Herrman, Timothy ; Nansen, Christian</creatorcontrib><description>This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of ruminant-derived bonemeal in animal feed is tested as part of an on-going research into development of automated, reliable fast and cost-effective quality control systems. HSI cubes contain spectral reflectance in both spatial dimensions and spectral bands. Support vector machines are used for classification of data in various domains. Selecting a subset of the spectral bands speeds processing and increases accuracy by reducing over-fitting. We developed two methods utilizing divergence values for selecting spectral band sets, 1) evolutionary search method and 2) divergence-based recursive feature elimination approach.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-130626</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animal feed</subject><ispartof>Intelligent data analysis, 2014-01, Vol.18 (1), p.25-42</ispartof><rights>2014 ‒ IOS Press and the authors. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-220507a6ea8769a9b270a55922af6eb998e010dfc34844cc7731df601989a7e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wilcox, Philip</creatorcontrib><creatorcontrib>Horton, Timothy M.</creatorcontrib><creatorcontrib>Youn, Eunseog</creatorcontrib><creatorcontrib>Jeong, Myong K.</creatorcontrib><creatorcontrib>Tate, Derrick</creatorcontrib><creatorcontrib>Herrman, Timothy</creatorcontrib><creatorcontrib>Nansen, Christian</creatorcontrib><title>Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality</title><title>Intelligent data analysis</title><description>This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of ruminant-derived bonemeal in animal feed is tested as part of an on-going research into development of automated, reliable fast and cost-effective quality control systems. HSI cubes contain spectral reflectance in both spatial dimensions and spectral bands. Support vector machines are used for classification of data in various domains. Selecting a subset of the spectral bands speeds processing and increases accuracy by reducing over-fitting. We developed two methods utilizing divergence values for selecting spectral band sets, 1) evolutionary search method and 2) divergence-based recursive feature elimination approach.</description><subject>Animal feed</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkMlOwzAQQCMEEuuFL_ANhBTwksTJsSplkZC49MAtmrqT1pVjB9sB9Sf4ZhyVI6dZ9GY087LsmtF7wYV4eH2c5UzQildH2RkrJcsLxuvjlNO6zotKfpxm5yHsKKUFp8VZ9rP4cmaM2lnwe-Kx0xZ7tJHAMHgHaouBdM6TFdg1CWhQTSxxHdnuB_RhSA0PhugeNgn91nE7jRqtYAIDiY7AGF2fSkV6Z3V0XtvNtAFsmjKkQ1yTzxGMjvvL7KQDE_DqL15ky6fFcv6Sv70_v85nb7kSgsecc1pSCRVCLasGmhWXFMqy4Ry6CldNUyNldN0pUdRFoZSUgq27irKmbkCiuMhuD2vTj58jhtj2Oig0Biy6MbSspJWQZc14Qu8OqPIuhCSoHXw62-9bRtvJeZuctwfnCb45wCHZaHdu9DZ98R_5C5Vmg4M</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Wilcox, Philip</creator><creator>Horton, Timothy M.</creator><creator>Youn, Eunseog</creator><creator>Jeong, Myong K.</creator><creator>Tate, Derrick</creator><creator>Herrman, Timothy</creator><creator>Nansen, Christian</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality</title><author>Wilcox, Philip ; Horton, Timothy M. ; Youn, Eunseog ; Jeong, Myong K. ; Tate, Derrick ; Herrman, Timothy ; Nansen, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-220507a6ea8769a9b270a55922af6eb998e010dfc34844cc7731df601989a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animal feed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilcox, Philip</creatorcontrib><creatorcontrib>Horton, Timothy M.</creatorcontrib><creatorcontrib>Youn, Eunseog</creatorcontrib><creatorcontrib>Jeong, Myong K.</creatorcontrib><creatorcontrib>Tate, Derrick</creatorcontrib><creatorcontrib>Herrman, Timothy</creatorcontrib><creatorcontrib>Nansen, Christian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilcox, Philip</au><au>Horton, Timothy M.</au><au>Youn, Eunseog</au><au>Jeong, Myong K.</au><au>Tate, Derrick</au><au>Herrman, Timothy</au><au>Nansen, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality</atitle><jtitle>Intelligent data analysis</jtitle><date>2014-01</date><risdate>2014</risdate><volume>18</volume><issue>1</issue><spage>25</spage><epage>42</epage><pages>25-42</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of ruminant-derived bonemeal in animal feed is tested as part of an on-going research into development of automated, reliable fast and cost-effective quality control systems. HSI cubes contain spectral reflectance in both spatial dimensions and spectral bands. Support vector machines are used for classification of data in various domains. Selecting a subset of the spectral bands speeds processing and increases accuracy by reducing over-fitting. We developed two methods utilizing divergence values for selecting spectral band sets, 1) evolutionary search method and 2) divergence-based recursive feature elimination approach.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.3233/IDA-130626</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-467X
ispartof Intelligent data analysis, 2014-01, Vol.18 (1), p.25-42
issn 1088-467X
1571-4128
language eng
recordid cdi_proquest_miscellaneous_1506375812
source Business Source Complete
subjects Animal feed
title Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20refinement%20approaches%20for%20band%20selection%20of%20hyperspectral%20images%20with%20applications%20to%20automatic%20monitoring%20of%20animal%20feed%20quality&rft.jtitle=Intelligent%20data%20analysis&rft.au=Wilcox,%20Philip&rft.date=2014-01&rft.volume=18&rft.issue=1&rft.spage=25&rft.epage=42&rft.pages=25-42&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-130626&rft_dat=%3Cproquest_cross%3E1506375812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506375812&rft_id=info:pmid/&rft_sage_id=10.3233_IDA-130626&rfr_iscdi=true