Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality
This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of ruminant-derived bonemeal in animal feed is tested as part of...
Gespeichert in:
Veröffentlicht in: | Intelligent data analysis 2014-01, Vol.18 (1), p.25-42 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | Intelligent data analysis |
container_volume | 18 |
creator | Wilcox, Philip Horton, Timothy M. Youn, Eunseog Jeong, Myong K. Tate, Derrick Herrman, Timothy Nansen, Christian |
description | This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of ruminant-derived bonemeal in animal feed is tested as part of an on-going research into development of automated, reliable fast and cost-effective quality control systems. HSI cubes contain spectral reflectance in both spatial dimensions and spectral bands. Support vector machines are used for classification of data in various domains. Selecting a subset of the spectral bands speeds processing and increases accuracy by reducing over-fitting. We developed two methods utilizing divergence values for selecting spectral band sets, 1) evolutionary search method and 2) divergence-based recursive feature elimination approach. |
doi_str_mv | 10.3233/IDA-130626 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506375812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3233_IDA-130626</sage_id><sourcerecordid>1506375812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-220507a6ea8769a9b270a55922af6eb998e010dfc34844cc7731df601989a7e3</originalsourceid><addsrcrecordid>eNptkMlOwzAQQCMEEuuFL_ANhBTwksTJsSplkZC49MAtmrqT1pVjB9sB9Sf4ZhyVI6dZ9GY087LsmtF7wYV4eH2c5UzQildH2RkrJcsLxuvjlNO6zotKfpxm5yHsKKUFp8VZ9rP4cmaM2lnwe-Kx0xZ7tJHAMHgHaouBdM6TFdg1CWhQTSxxHdnuB_RhSA0PhugeNgn91nE7jRqtYAIDiY7AGF2fSkV6Z3V0XtvNtAFsmjKkQ1yTzxGMjvvL7KQDE_DqL15ky6fFcv6Sv70_v85nb7kSgsecc1pSCRVCLasGmhWXFMqy4Ry6CldNUyNldN0pUdRFoZSUgq27irKmbkCiuMhuD2vTj58jhtj2Oig0Biy6MbSspJWQZc14Qu8OqPIuhCSoHXw62-9bRtvJeZuctwfnCb45wCHZaHdu9DZ98R_5C5Vmg4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506375812</pqid></control><display><type>article</type><title>Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality</title><source>Business Source Complete</source><creator>Wilcox, Philip ; Horton, Timothy M. ; Youn, Eunseog ; Jeong, Myong K. ; Tate, Derrick ; Herrman, Timothy ; Nansen, Christian</creator><creatorcontrib>Wilcox, Philip ; Horton, Timothy M. ; Youn, Eunseog ; Jeong, Myong K. ; Tate, Derrick ; Herrman, Timothy ; Nansen, Christian</creatorcontrib><description>This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of ruminant-derived bonemeal in animal feed is tested as part of an on-going research into development of automated, reliable fast and cost-effective quality control systems. HSI cubes contain spectral reflectance in both spatial dimensions and spectral bands. Support vector machines are used for classification of data in various domains. Selecting a subset of the spectral bands speeds processing and increases accuracy by reducing over-fitting. We developed two methods utilizing divergence values for selecting spectral band sets, 1) evolutionary search method and 2) divergence-based recursive feature elimination approach.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-130626</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animal feed</subject><ispartof>Intelligent data analysis, 2014-01, Vol.18 (1), p.25-42</ispartof><rights>2014 ‒ IOS Press and the authors. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-220507a6ea8769a9b270a55922af6eb998e010dfc34844cc7731df601989a7e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wilcox, Philip</creatorcontrib><creatorcontrib>Horton, Timothy M.</creatorcontrib><creatorcontrib>Youn, Eunseog</creatorcontrib><creatorcontrib>Jeong, Myong K.</creatorcontrib><creatorcontrib>Tate, Derrick</creatorcontrib><creatorcontrib>Herrman, Timothy</creatorcontrib><creatorcontrib>Nansen, Christian</creatorcontrib><title>Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality</title><title>Intelligent data analysis</title><description>This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of ruminant-derived bonemeal in animal feed is tested as part of an on-going research into development of automated, reliable fast and cost-effective quality control systems. HSI cubes contain spectral reflectance in both spatial dimensions and spectral bands. Support vector machines are used for classification of data in various domains. Selecting a subset of the spectral bands speeds processing and increases accuracy by reducing over-fitting. We developed two methods utilizing divergence values for selecting spectral band sets, 1) evolutionary search method and 2) divergence-based recursive feature elimination approach.</description><subject>Animal feed</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkMlOwzAQQCMEEuuFL_ANhBTwksTJsSplkZC49MAtmrqT1pVjB9sB9Sf4ZhyVI6dZ9GY087LsmtF7wYV4eH2c5UzQildH2RkrJcsLxuvjlNO6zotKfpxm5yHsKKUFp8VZ9rP4cmaM2lnwe-Kx0xZ7tJHAMHgHaouBdM6TFdg1CWhQTSxxHdnuB_RhSA0PhugeNgn91nE7jRqtYAIDiY7AGF2fSkV6Z3V0XtvNtAFsmjKkQ1yTzxGMjvvL7KQDE_DqL15ky6fFcv6Sv70_v85nb7kSgsecc1pSCRVCLasGmhWXFMqy4Ry6CldNUyNldN0pUdRFoZSUgq27irKmbkCiuMhuD2vTj58jhtj2Oig0Biy6MbSspJWQZc14Qu8OqPIuhCSoHXw62-9bRtvJeZuctwfnCb45wCHZaHdu9DZ98R_5C5Vmg4M</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Wilcox, Philip</creator><creator>Horton, Timothy M.</creator><creator>Youn, Eunseog</creator><creator>Jeong, Myong K.</creator><creator>Tate, Derrick</creator><creator>Herrman, Timothy</creator><creator>Nansen, Christian</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality</title><author>Wilcox, Philip ; Horton, Timothy M. ; Youn, Eunseog ; Jeong, Myong K. ; Tate, Derrick ; Herrman, Timothy ; Nansen, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-220507a6ea8769a9b270a55922af6eb998e010dfc34844cc7731df601989a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animal feed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilcox, Philip</creatorcontrib><creatorcontrib>Horton, Timothy M.</creatorcontrib><creatorcontrib>Youn, Eunseog</creatorcontrib><creatorcontrib>Jeong, Myong K.</creatorcontrib><creatorcontrib>Tate, Derrick</creatorcontrib><creatorcontrib>Herrman, Timothy</creatorcontrib><creatorcontrib>Nansen, Christian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilcox, Philip</au><au>Horton, Timothy M.</au><au>Youn, Eunseog</au><au>Jeong, Myong K.</au><au>Tate, Derrick</au><au>Herrman, Timothy</au><au>Nansen, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality</atitle><jtitle>Intelligent data analysis</jtitle><date>2014-01</date><risdate>2014</risdate><volume>18</volume><issue>1</issue><spage>25</spage><epage>42</epage><pages>25-42</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>This paper presents methods for spectral band selection in hyperspectral image (HSI) cubes based on classification of reflectance data acquired from samples of livestock feed materials and ruminant-derived bonemeal. Automated detection of ruminant-derived bonemeal in animal feed is tested as part of an on-going research into development of automated, reliable fast and cost-effective quality control systems. HSI cubes contain spectral reflectance in both spatial dimensions and spectral bands. Support vector machines are used for classification of data in various domains. Selecting a subset of the spectral bands speeds processing and increases accuracy by reducing over-fitting. We developed two methods utilizing divergence values for selecting spectral band sets, 1) evolutionary search method and 2) divergence-based recursive feature elimination approach.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.3233/IDA-130626</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-467X |
ispartof | Intelligent data analysis, 2014-01, Vol.18 (1), p.25-42 |
issn | 1088-467X 1571-4128 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506375812 |
source | Business Source Complete |
subjects | Animal feed |
title | Evolutionary refinement approaches for band selection of hyperspectral images with applications to automatic monitoring of animal feed quality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20refinement%20approaches%20for%20band%20selection%20of%20hyperspectral%20images%20with%20applications%20to%20automatic%20monitoring%20of%20animal%20feed%20quality&rft.jtitle=Intelligent%20data%20analysis&rft.au=Wilcox,%20Philip&rft.date=2014-01&rft.volume=18&rft.issue=1&rft.spage=25&rft.epage=42&rft.pages=25-42&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-130626&rft_dat=%3Cproquest_cross%3E1506375812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506375812&rft_id=info:pmid/&rft_sage_id=10.3233_IDA-130626&rfr_iscdi=true |