Preparation of Reduced Iron Powders from Mill Scale with Microwave Heating: Optimization Using Response Surface Methodology
Preparation of the reduced iron powder has been attempted with mill scale as the iron-bearing material and with wood charcoal as the reducing agent through microwave heating. The response surface methodology (RSM) is used to optimize the process conditions, with wood charcoal, process temperature, a...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2013-12, Vol.44 (6), p.1478-1485 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1485 |
---|---|
container_issue | 6 |
container_start_page | 1478 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 44 |
creator | Ye, Qianxu Zhu, Hongbo Peng, Jinhui Srinivasa Kannan, C. Chen, Jian Dai, Linqing Liu, Peng |
description | Preparation of the reduced iron powder has been attempted with mill scale as the iron-bearing material and with wood charcoal as the reducing agent through microwave heating. The response surface methodology (RSM) is used to optimize the process conditions, with wood charcoal, process temperature, and holding time being the three process parameters. The regressed model equation eliminating the insignificant parameters through an analysis of variance (ANOVA) was used to optimize the process conditions. The optimum process parameters for the preparation of reduced iron powders have been identified to be the wood charcoal of 13.8 pct, a process temperature of 1391 K (1118 °C), and a holding time of 43 minutes. The optimum conditions resulted in reduced iron powders with a total iron content of 98.60 pct and a metallization ratio of 98.71 pct. X-ray fluorescence (XRF) was used to estimate the elemental contents of the reduced iron powder, which meets the specification of the HY100.23 first-class iron powder standard. Additionally X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) analysis were performed and the results are compiled. |
doi_str_mv | 10.1007/s11663-013-9872-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506375374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506375374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-920c5a2a7a26c89e72c6897359f16798c2621e734630d1bea789387de5971f473</originalsourceid><addsrcrecordid>eNp1kV1LHTEQhpdSQXvsD_AuUAq9Wc0km6_eFakeQVH8uA5pdva4smezTXZ7UP-8OawUEbyameR5X4Z5i-IA6CFQqo4SgJS8pMBLoxUr2adiD0TFSzAgP-eeKl4KCWK3-JLSA6VUGsP3iueriIOLbmxDT0JDrrGePNbkLOb5KmxqjIk0MazJRdt15Ma7DsmmHe_z7GPYuH9Ilpjl_eonuRzGdt0-zWZ3Kb9lvzSEPiG5mWLjPJILHO9DHbqwetwvdhrXJfz6WhfF3cnv2-NleX55enb867z0FaNjaRj1wjGnHJNeG1TMS20UF6YBqYz2TDJAxSvJaQ1_0CltuFY1CqOgqRRfFD9m3yGGvxOm0a7b5LHrXI9hShYElVwJrqqMfnuHPoQp9nk7C5UwQistWaZgpvIFUorY2CG2axcfLVC7jcPOcdgch93GYbea76_OLuUjNtH1vk3_hUxTqZmWmWMzl_JXv8L4ZoMPzV8ADLeZoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459587862</pqid></control><display><type>article</type><title>Preparation of Reduced Iron Powders from Mill Scale with Microwave Heating: Optimization Using Response Surface Methodology</title><source>2022 ECC(Springer)</source><creator>Ye, Qianxu ; Zhu, Hongbo ; Peng, Jinhui ; Srinivasa Kannan, C. ; Chen, Jian ; Dai, Linqing ; Liu, Peng</creator><creatorcontrib>Ye, Qianxu ; Zhu, Hongbo ; Peng, Jinhui ; Srinivasa Kannan, C. ; Chen, Jian ; Dai, Linqing ; Liu, Peng</creatorcontrib><description>Preparation of the reduced iron powder has been attempted with mill scale as the iron-bearing material and with wood charcoal as the reducing agent through microwave heating. The response surface methodology (RSM) is used to optimize the process conditions, with wood charcoal, process temperature, and holding time being the three process parameters. The regressed model equation eliminating the insignificant parameters through an analysis of variance (ANOVA) was used to optimize the process conditions. The optimum process parameters for the preparation of reduced iron powders have been identified to be the wood charcoal of 13.8 pct, a process temperature of 1391 K (1118 °C), and a holding time of 43 minutes. The optimum conditions resulted in reduced iron powders with a total iron content of 98.60 pct and a metallization ratio of 98.71 pct. X-ray fluorescence (XRF) was used to estimate the elemental contents of the reduced iron powder, which meets the specification of the HY100.23 first-class iron powder standard. Additionally X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) analysis were performed and the results are compiled.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-013-9872-2</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis of variance ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Exact sciences and technology ; Iron ; Materials Science ; Metallic Materials ; Metals. Metallurgy ; Microwave heating ; Nanotechnology ; Powder metallurgy ; Production of metals ; Structural Materials ; Surface chemistry ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2013-12, Vol.44 (6), p.1478-1485</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-920c5a2a7a26c89e72c6897359f16798c2621e734630d1bea789387de5971f473</citedby><cites>FETCH-LOGICAL-c420t-920c5a2a7a26c89e72c6897359f16798c2621e734630d1bea789387de5971f473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-013-9872-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-013-9872-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28068286$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Qianxu</creatorcontrib><creatorcontrib>Zhu, Hongbo</creatorcontrib><creatorcontrib>Peng, Jinhui</creatorcontrib><creatorcontrib>Srinivasa Kannan, C.</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Dai, Linqing</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><title>Preparation of Reduced Iron Powders from Mill Scale with Microwave Heating: Optimization Using Response Surface Methodology</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Preparation of the reduced iron powder has been attempted with mill scale as the iron-bearing material and with wood charcoal as the reducing agent through microwave heating. The response surface methodology (RSM) is used to optimize the process conditions, with wood charcoal, process temperature, and holding time being the three process parameters. The regressed model equation eliminating the insignificant parameters through an analysis of variance (ANOVA) was used to optimize the process conditions. The optimum process parameters for the preparation of reduced iron powders have been identified to be the wood charcoal of 13.8 pct, a process temperature of 1391 K (1118 °C), and a holding time of 43 minutes. The optimum conditions resulted in reduced iron powders with a total iron content of 98.60 pct and a metallization ratio of 98.71 pct. X-ray fluorescence (XRF) was used to estimate the elemental contents of the reduced iron powder, which meets the specification of the HY100.23 first-class iron powder standard. Additionally X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) analysis were performed and the results are compiled.</description><subject>Analysis of variance</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Microwave heating</subject><subject>Nanotechnology</subject><subject>Powder metallurgy</subject><subject>Production of metals</subject><subject>Structural Materials</subject><subject>Surface chemistry</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1LHTEQhpdSQXvsD_AuUAq9Wc0km6_eFakeQVH8uA5pdva4smezTXZ7UP-8OawUEbyameR5X4Z5i-IA6CFQqo4SgJS8pMBLoxUr2adiD0TFSzAgP-eeKl4KCWK3-JLSA6VUGsP3iueriIOLbmxDT0JDrrGePNbkLOb5KmxqjIk0MazJRdt15Ma7DsmmHe_z7GPYuH9Ilpjl_eonuRzGdt0-zWZ3Kb9lvzSEPiG5mWLjPJILHO9DHbqwetwvdhrXJfz6WhfF3cnv2-NleX55enb867z0FaNjaRj1wjGnHJNeG1TMS20UF6YBqYz2TDJAxSvJaQ1_0CltuFY1CqOgqRRfFD9m3yGGvxOm0a7b5LHrXI9hShYElVwJrqqMfnuHPoQp9nk7C5UwQistWaZgpvIFUorY2CG2axcfLVC7jcPOcdgch93GYbea76_OLuUjNtH1vk3_hUxTqZmWmWMzl_JXv8L4ZoMPzV8ADLeZoA</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Ye, Qianxu</creator><creator>Zhu, Hongbo</creator><creator>Peng, Jinhui</creator><creator>Srinivasa Kannan, C.</creator><creator>Chen, Jian</creator><creator>Dai, Linqing</creator><creator>Liu, Peng</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SE</scope></search><sort><creationdate>20131201</creationdate><title>Preparation of Reduced Iron Powders from Mill Scale with Microwave Heating: Optimization Using Response Surface Methodology</title><author>Ye, Qianxu ; Zhu, Hongbo ; Peng, Jinhui ; Srinivasa Kannan, C. ; Chen, Jian ; Dai, Linqing ; Liu, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-920c5a2a7a26c89e72c6897359f16798c2621e734630d1bea789387de5971f473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis of variance</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Microwave heating</topic><topic>Nanotechnology</topic><topic>Powder metallurgy</topic><topic>Production of metals</topic><topic>Structural Materials</topic><topic>Surface chemistry</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Qianxu</creatorcontrib><creatorcontrib>Zhu, Hongbo</creatorcontrib><creatorcontrib>Peng, Jinhui</creatorcontrib><creatorcontrib>Srinivasa Kannan, C.</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Dai, Linqing</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Corrosion Abstracts</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Qianxu</au><au>Zhu, Hongbo</au><au>Peng, Jinhui</au><au>Srinivasa Kannan, C.</au><au>Chen, Jian</au><au>Dai, Linqing</au><au>Liu, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Reduced Iron Powders from Mill Scale with Microwave Heating: Optimization Using Response Surface Methodology</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>44</volume><issue>6</issue><spage>1478</spage><epage>1485</epage><pages>1478-1485</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>Preparation of the reduced iron powder has been attempted with mill scale as the iron-bearing material and with wood charcoal as the reducing agent through microwave heating. The response surface methodology (RSM) is used to optimize the process conditions, with wood charcoal, process temperature, and holding time being the three process parameters. The regressed model equation eliminating the insignificant parameters through an analysis of variance (ANOVA) was used to optimize the process conditions. The optimum process parameters for the preparation of reduced iron powders have been identified to be the wood charcoal of 13.8 pct, a process temperature of 1391 K (1118 °C), and a holding time of 43 minutes. The optimum conditions resulted in reduced iron powders with a total iron content of 98.60 pct and a metallization ratio of 98.71 pct. X-ray fluorescence (XRF) was used to estimate the elemental contents of the reduced iron powder, which meets the specification of the HY100.23 first-class iron powder standard. Additionally X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) analysis were performed and the results are compiled.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11663-013-9872-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2013-12, Vol.44 (6), p.1478-1485 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506375374 |
source | 2022 ECC(Springer) |
subjects | Analysis of variance Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Exact sciences and technology Iron Materials Science Metallic Materials Metals. Metallurgy Microwave heating Nanotechnology Powder metallurgy Production of metals Structural Materials Surface chemistry Surfaces and Interfaces Thin Films |
title | Preparation of Reduced Iron Powders from Mill Scale with Microwave Heating: Optimization Using Response Surface Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Reduced%20Iron%20Powders%20from%20Mill%20Scale%20with%20Microwave%20Heating:%20Optimization%20Using%20Response%20Surface%20Methodology&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Ye,%20Qianxu&rft.date=2013-12-01&rft.volume=44&rft.issue=6&rft.spage=1478&rft.epage=1485&rft.pages=1478-1485&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-013-9872-2&rft_dat=%3Cproquest_cross%3E1506375374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459587862&rft_id=info:pmid/&rfr_iscdi=true |