Finding Maximal Cliques in Massive Networks

Maximal clique enumeration is a fundamental problem in graph theory and has important applications in many areas such as social network analysis and bioinformatics. The problem is extensively studied; however, the best existing algorithms require memory space linear in the size of the input graph. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on database systems 2011-12, Vol.36 (4), p.1-34
Hauptverfasser: CHENG, James, YIPING KE, ADA WAI-CHEE FU, JEFFREY XU YU, LINHONG ZHU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 4
container_start_page 1
container_title ACM transactions on database systems
container_volume 36
creator CHENG, James
YIPING KE
ADA WAI-CHEE FU
JEFFREY XU YU
LINHONG ZHU
description Maximal clique enumeration is a fundamental problem in graph theory and has important applications in many areas such as social network analysis and bioinformatics. The problem is extensively studied; however, the best existing algorithms require memory space linear in the size of the input graph. This has become a serious concern in view of the massive volume of today's fast-growing networks. We propose a general framework for designing external-memory algorithms for maximal clique enumeration in large graphs. The general framework enables maximal clique enumeration to be processed recursively in small subgraphs of the input graph, thus allowing in-memory computation of maximal cliques without the costly random disk access. We prove that the set of cliques obtained by the recursive local computation is both correct (i.e., globally maximal) and complete. The subgraph to be processed each time is defined based on a set of base vertices that can be flexibly chosen to achieve different purposes. We discuss the selection of the base vertices to fully utilize the available memory in order to minimize I/O cost in static graphs, and for update maintenance in dynamic graphs. We also apply our framework to design an external-memory algorithm for maximum clique computation in a large graph.
doi_str_mv 10.1145/2043652.2043654
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506375283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506375283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-2537c29a7e97a480ffb58a013897f4b4ed3f6bfc5dcc58103e87295ff2c712e43</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbPXnMRBEk7uzuTTY5SrAp-XPQctttdWU2TutP68d-b0uDpwfDmN_OeEOcSJlIiTRWgLkhN9ooHYiSJTI4F4qEYgS5UTpWkY3HC_A4AWFZmJK7msV3G9i17tD9xZZts1sTPrecstv2IOX757Mlvvrv0wafiKNiG_dmgY_E6v3mZ3eUPz7f3s-uH3KGUm1yRNk5V1vjKWCwhhAWVFqTuDwZcoF_qUCyCo6VzVErQvjSqohCUM1J51GNxueeuU7f7ZVOvIjvfNLb13ZZrSVBoQ6rUvXW6t7rUMScf6nXqY6TfWkK9q6Ueahl0B78Y4JadbUKyrYv8v6YIAYwy-g_JcV_O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506375283</pqid></control><display><type>article</type><title>Finding Maximal Cliques in Massive Networks</title><source>ACM Digital Library Complete</source><creator>CHENG, James ; YIPING KE ; ADA WAI-CHEE FU ; JEFFREY XU YU ; LINHONG ZHU</creator><creatorcontrib>CHENG, James ; YIPING KE ; ADA WAI-CHEE FU ; JEFFREY XU YU ; LINHONG ZHU</creatorcontrib><description>Maximal clique enumeration is a fundamental problem in graph theory and has important applications in many areas such as social network analysis and bioinformatics. The problem is extensively studied; however, the best existing algorithms require memory space linear in the size of the input graph. This has become a serious concern in view of the massive volume of today's fast-growing networks. We propose a general framework for designing external-memory algorithms for maximal clique enumeration in large graphs. The general framework enables maximal clique enumeration to be processed recursively in small subgraphs of the input graph, thus allowing in-memory computation of maximal cliques without the costly random disk access. We prove that the set of cliques obtained by the recursive local computation is both correct (i.e., globally maximal) and complete. The subgraph to be processed each time is defined based on a set of base vertices that can be flexibly chosen to achieve different purposes. We discuss the selection of the base vertices to fully utilize the available memory in order to minimize I/O cost in static graphs, and for update maintenance in dynamic graphs. We also apply our framework to design an external-memory algorithm for maximum clique computation in a large graph.</description><identifier>ISSN: 0362-5915</identifier><identifier>EISSN: 1557-4644</identifier><identifier>DOI: 10.1145/2043652.2043654</identifier><identifier>CODEN: ATDSD3</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithms ; Applied sciences ; Biological and medical sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Graph theory ; Information retrieval. Graph ; Mathematics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Sciences and techniques of general use ; Software ; Theoretical computing</subject><ispartof>ACM transactions on database systems, 2011-12, Vol.36 (4), p.1-34</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-2537c29a7e97a480ffb58a013897f4b4ed3f6bfc5dcc58103e87295ff2c712e43</citedby><cites>FETCH-LOGICAL-c411t-2537c29a7e97a480ffb58a013897f4b4ed3f6bfc5dcc58103e87295ff2c712e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25400727$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHENG, James</creatorcontrib><creatorcontrib>YIPING KE</creatorcontrib><creatorcontrib>ADA WAI-CHEE FU</creatorcontrib><creatorcontrib>JEFFREY XU YU</creatorcontrib><creatorcontrib>LINHONG ZHU</creatorcontrib><title>Finding Maximal Cliques in Massive Networks</title><title>ACM transactions on database systems</title><description>Maximal clique enumeration is a fundamental problem in graph theory and has important applications in many areas such as social network analysis and bioinformatics. The problem is extensively studied; however, the best existing algorithms require memory space linear in the size of the input graph. This has become a serious concern in view of the massive volume of today's fast-growing networks. We propose a general framework for designing external-memory algorithms for maximal clique enumeration in large graphs. The general framework enables maximal clique enumeration to be processed recursively in small subgraphs of the input graph, thus allowing in-memory computation of maximal cliques without the costly random disk access. We prove that the set of cliques obtained by the recursive local computation is both correct (i.e., globally maximal) and complete. The subgraph to be processed each time is defined based on a set of base vertices that can be flexibly chosen to achieve different purposes. We discuss the selection of the base vertices to fully utilize the available memory in order to minimize I/O cost in static graphs, and for update maintenance in dynamic graphs. We also apply our framework to design an external-memory algorithm for maximum clique computation in a large graph.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Graph theory</subject><subject>Information retrieval. Graph</subject><subject>Mathematics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0362-5915</issn><issn>1557-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRsFbPXnMRBEk7uzuTTY5SrAp-XPQctttdWU2TutP68d-b0uDpwfDmN_OeEOcSJlIiTRWgLkhN9ooHYiSJTI4F4qEYgS5UTpWkY3HC_A4AWFZmJK7msV3G9i17tD9xZZts1sTPrecstv2IOX757Mlvvrv0wafiKNiG_dmgY_E6v3mZ3eUPz7f3s-uH3KGUm1yRNk5V1vjKWCwhhAWVFqTuDwZcoF_qUCyCo6VzVErQvjSqohCUM1J51GNxueeuU7f7ZVOvIjvfNLb13ZZrSVBoQ6rUvXW6t7rUMScf6nXqY6TfWkK9q6Ueahl0B78Y4JadbUKyrYv8v6YIAYwy-g_JcV_O</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>CHENG, James</creator><creator>YIPING KE</creator><creator>ADA WAI-CHEE FU</creator><creator>JEFFREY XU YU</creator><creator>LINHONG ZHU</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Finding Maximal Cliques in Massive Networks</title><author>CHENG, James ; YIPING KE ; ADA WAI-CHEE FU ; JEFFREY XU YU ; LINHONG ZHU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-2537c29a7e97a480ffb58a013897f4b4ed3f6bfc5dcc58103e87295ff2c712e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Graph theory</topic><topic>Information retrieval. Graph</topic><topic>Mathematics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHENG, James</creatorcontrib><creatorcontrib>YIPING KE</creatorcontrib><creatorcontrib>ADA WAI-CHEE FU</creatorcontrib><creatorcontrib>JEFFREY XU YU</creatorcontrib><creatorcontrib>LINHONG ZHU</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on database systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHENG, James</au><au>YIPING KE</au><au>ADA WAI-CHEE FU</au><au>JEFFREY XU YU</au><au>LINHONG ZHU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Maximal Cliques in Massive Networks</atitle><jtitle>ACM transactions on database systems</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>36</volume><issue>4</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><issn>0362-5915</issn><eissn>1557-4644</eissn><coden>ATDSD3</coden><abstract>Maximal clique enumeration is a fundamental problem in graph theory and has important applications in many areas such as social network analysis and bioinformatics. The problem is extensively studied; however, the best existing algorithms require memory space linear in the size of the input graph. This has become a serious concern in view of the massive volume of today's fast-growing networks. We propose a general framework for designing external-memory algorithms for maximal clique enumeration in large graphs. The general framework enables maximal clique enumeration to be processed recursively in small subgraphs of the input graph, thus allowing in-memory computation of maximal cliques without the costly random disk access. We prove that the set of cliques obtained by the recursive local computation is both correct (i.e., globally maximal) and complete. The subgraph to be processed each time is defined based on a set of base vertices that can be flexibly chosen to achieve different purposes. We discuss the selection of the base vertices to fully utilize the available memory in order to minimize I/O cost in static graphs, and for update maintenance in dynamic graphs. We also apply our framework to design an external-memory algorithm for maximum clique computation in a large graph.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/2043652.2043654</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-5915
ispartof ACM transactions on database systems, 2011-12, Vol.36 (4), p.1-34
issn 0362-5915
1557-4644
language eng
recordid cdi_proquest_miscellaneous_1506375283
source ACM Digital Library Complete
subjects Algorithms
Applied sciences
Biological and medical sciences
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Graph theory
Information retrieval. Graph
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Sciences and techniques of general use
Software
Theoretical computing
title Finding Maximal Cliques in Massive Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Maximal%20Cliques%20in%20Massive%20Networks&rft.jtitle=ACM%20transactions%20on%20database%20systems&rft.au=CHENG,%20James&rft.date=2011-12-01&rft.volume=36&rft.issue=4&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.issn=0362-5915&rft.eissn=1557-4644&rft.coden=ATDSD3&rft_id=info:doi/10.1145/2043652.2043654&rft_dat=%3Cproquest_cross%3E1506375283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506375283&rft_id=info:pmid/&rfr_iscdi=true