Susceptibility evaluation and mapping of China’s landslides based on multi-source data

Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards (Dordrecht) 2013-12, Vol.69 (3), p.1477-1495
Hauptverfasser: Liu, Chun, Li, Weiyue, Wu, Hangbin, Lu, Ping, Sang, Kai, Sun, Weiwei, Chen, Wen, Hong, Yang, Li, Rongxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1495
container_issue 3
container_start_page 1477
container_title Natural hazards (Dordrecht)
container_volume 69
creator Liu, Chun
Li, Weiyue
Wu, Hangbin
Lu, Ping
Sang, Kai
Sun, Weiwei
Chen, Wen
Hong, Yang
Li, Rongxing
description Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively characterizing landslide damages. This paper collected and analyzed the historical landslide events data of the past 60 years in China. Validated by the frequencies and distributions of landslides, nine key factors (lithology, convexity, slope gradient, slope aspect, elevation, soil property, vegetation coverage, flow, and fracture) are selected to construct landslide susceptibility (LS) empirical models by back-propagation artificial neural network method. By integrating landslide empirical models with surface multi-source geospatial and remote sensing data, this paper further performs a large-scale LS assessment throughout China. The resulting landslide hazard assessment map of China clearly illustrates the hot spots of the high landslide potential areas, mostly concentrated in the southwest. The study implements a complete framework of multi-source data collecting, processing, modeling, and synthesizing that fulfills the assessment of LS and provides a theoretical basis and practical guide for predicting and mitigating landslide disasters potentially throughout China.
doi_str_mv 10.1007/s11069-013-0759-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506373118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1504417642</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-e846b322c0916b9cdb7473da5c44e144b1557b0002d647e1ab029f2db88a039d3</originalsourceid><addsrcrecordid>eNqNkc1qFUEQhRtR8Bp9AHcNImQzSVX_zizDxZhAIAsVsmu6p3tih7kzk6kZ4e58DV_PJ7HDDUECgquiqO8c6nAYe49wggD2lBDBNBWgrMDqptq_YBvUtmy1gpdsA43ACiTcvGZviO4AEI1oNuzmy0ptmpYccp-XPU8_fL_6JY8D90PkOz9NebjlY8e33_Pgf__8RbwvF-pzTMSDpxR5gXdrv-SKxnVuE49-8W_Zq873lN49ziP27fzT1-1FdXX9-XJ7dlV5JfVSpVqZIIVooUETmjYGq6yMXrdKJVQqoNY2AICIRtmEPoBoOhFDXXuQTZRH7PjgO83j_ZpocbtcEvXlyTSu5FCDkVYi1v-DKoXWKFHQD8_QuxJtKEEcKoO1EgpNofBAtfNINKfOTXPe-XnvENxDLe5Qiyu1uIda3L5oPj46e2p9381-aDM9CUUNqIVWhRMHjsppuE3zXx_80_wPQdadAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461842416</pqid></control><display><type>article</type><title>Susceptibility evaluation and mapping of China’s landslides based on multi-source data</title><source>PAIS Index</source><source>SpringerNature Journals</source><creator>Liu, Chun ; Li, Weiyue ; Wu, Hangbin ; Lu, Ping ; Sang, Kai ; Sun, Weiwei ; Chen, Wen ; Hong, Yang ; Li, Rongxing</creator><creatorcontrib>Liu, Chun ; Li, Weiyue ; Wu, Hangbin ; Lu, Ping ; Sang, Kai ; Sun, Weiwei ; Chen, Wen ; Hong, Yang ; Li, Rongxing</creatorcontrib><description>Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively characterizing landslide damages. This paper collected and analyzed the historical landslide events data of the past 60 years in China. Validated by the frequencies and distributions of landslides, nine key factors (lithology, convexity, slope gradient, slope aspect, elevation, soil property, vegetation coverage, flow, and fracture) are selected to construct landslide susceptibility (LS) empirical models by back-propagation artificial neural network method. By integrating landslide empirical models with surface multi-source geospatial and remote sensing data, this paper further performs a large-scale LS assessment throughout China. The resulting landslide hazard assessment map of China clearly illustrates the hot spots of the high landslide potential areas, mostly concentrated in the southwest. The study implements a complete framework of multi-source data collecting, processing, modeling, and synthesizing that fulfills the assessment of LS and provides a theoretical basis and practical guide for predicting and mitigating landslide disasters potentially throughout China.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-013-0759-y</identifier><identifier>CODEN: NAHZEL</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Assessments ; China ; China (People's Republic) ; Civil Engineering ; Climate ; Climate change ; Disaster management ; Disaster prevention ; Disasters ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Emergency preparedness ; Empirical analysis ; Engineering and environment geology. Geothermics ; Environmental Management ; Exact sciences and technology ; Extreme weather ; Geological hazards ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hazard assessment ; Hydrogeology ; Landslides ; Landslides &amp; mudslides ; Lithology ; Mapping ; Mathematical models ; Natural Hazards ; Natural hazards: prediction, damages, etc ; News ; Original Paper ; Property ; Rainfall ; Remote sensing ; Soil properties ; Vegetation</subject><ispartof>Natural hazards (Dordrecht), 2013-12, Vol.69 (3), p.1477-1495</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-e846b322c0916b9cdb7473da5c44e144b1557b0002d647e1ab029f2db88a039d3</citedby><cites>FETCH-LOGICAL-a435t-e846b322c0916b9cdb7473da5c44e144b1557b0002d647e1ab029f2db88a039d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-013-0759-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-013-0759-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27865,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28015254$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Li, Weiyue</creatorcontrib><creatorcontrib>Wu, Hangbin</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Sang, Kai</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Hong, Yang</creatorcontrib><creatorcontrib>Li, Rongxing</creatorcontrib><title>Susceptibility evaluation and mapping of China’s landslides based on multi-source data</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively characterizing landslide damages. This paper collected and analyzed the historical landslide events data of the past 60 years in China. Validated by the frequencies and distributions of landslides, nine key factors (lithology, convexity, slope gradient, slope aspect, elevation, soil property, vegetation coverage, flow, and fracture) are selected to construct landslide susceptibility (LS) empirical models by back-propagation artificial neural network method. By integrating landslide empirical models with surface multi-source geospatial and remote sensing data, this paper further performs a large-scale LS assessment throughout China. The resulting landslide hazard assessment map of China clearly illustrates the hot spots of the high landslide potential areas, mostly concentrated in the southwest. The study implements a complete framework of multi-source data collecting, processing, modeling, and synthesizing that fulfills the assessment of LS and provides a theoretical basis and practical guide for predicting and mitigating landslide disasters potentially throughout China.</description><subject>Assessments</subject><subject>China</subject><subject>China (People's Republic)</subject><subject>Civil Engineering</subject><subject>Climate</subject><subject>Climate change</subject><subject>Disaster management</subject><subject>Disaster prevention</subject><subject>Disasters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Emergency preparedness</subject><subject>Empirical analysis</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental Management</subject><subject>Exact sciences and technology</subject><subject>Extreme weather</subject><subject>Geological hazards</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hazard assessment</subject><subject>Hydrogeology</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Lithology</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Natural Hazards</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>News</subject><subject>Original Paper</subject><subject>Property</subject><subject>Rainfall</subject><subject>Remote sensing</subject><subject>Soil properties</subject><subject>Vegetation</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>7TQ</sourceid><recordid>eNqNkc1qFUEQhRtR8Bp9AHcNImQzSVX_zizDxZhAIAsVsmu6p3tih7kzk6kZ4e58DV_PJ7HDDUECgquiqO8c6nAYe49wggD2lBDBNBWgrMDqptq_YBvUtmy1gpdsA43ACiTcvGZviO4AEI1oNuzmy0ptmpYccp-XPU8_fL_6JY8D90PkOz9NebjlY8e33_Pgf__8RbwvF-pzTMSDpxR5gXdrv-SKxnVuE49-8W_Zq873lN49ziP27fzT1-1FdXX9-XJ7dlV5JfVSpVqZIIVooUETmjYGq6yMXrdKJVQqoNY2AICIRtmEPoBoOhFDXXuQTZRH7PjgO83j_ZpocbtcEvXlyTSu5FCDkVYi1v-DKoXWKFHQD8_QuxJtKEEcKoO1EgpNofBAtfNINKfOTXPe-XnvENxDLe5Qiyu1uIda3L5oPj46e2p9381-aDM9CUUNqIVWhRMHjsppuE3zXx_80_wPQdadAg</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Liu, Chun</creator><creator>Li, Weiyue</creator><creator>Wu, Hangbin</creator><creator>Lu, Ping</creator><creator>Sang, Kai</creator><creator>Sun, Weiwei</creator><creator>Chen, Wen</creator><creator>Hong, Yang</creator><creator>Li, Rongxing</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>20131201</creationdate><title>Susceptibility evaluation and mapping of China’s landslides based on multi-source data</title><author>Liu, Chun ; Li, Weiyue ; Wu, Hangbin ; Lu, Ping ; Sang, Kai ; Sun, Weiwei ; Chen, Wen ; Hong, Yang ; Li, Rongxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-e846b322c0916b9cdb7473da5c44e144b1557b0002d647e1ab029f2db88a039d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Assessments</topic><topic>China</topic><topic>China (People's Republic)</topic><topic>Civil Engineering</topic><topic>Climate</topic><topic>Climate change</topic><topic>Disaster management</topic><topic>Disaster prevention</topic><topic>Disasters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Emergency preparedness</topic><topic>Empirical analysis</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental Management</topic><topic>Exact sciences and technology</topic><topic>Extreme weather</topic><topic>Geological hazards</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hazard assessment</topic><topic>Hydrogeology</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Lithology</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Natural Hazards</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>News</topic><topic>Original Paper</topic><topic>Property</topic><topic>Rainfall</topic><topic>Remote sensing</topic><topic>Soil properties</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Li, Weiyue</creatorcontrib><creatorcontrib>Wu, Hangbin</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Sang, Kai</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Hong, Yang</creatorcontrib><creatorcontrib>Li, Rongxing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chun</au><au>Li, Weiyue</au><au>Wu, Hangbin</au><au>Lu, Ping</au><au>Sang, Kai</au><au>Sun, Weiwei</au><au>Chen, Wen</au><au>Hong, Yang</au><au>Li, Rongxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Susceptibility evaluation and mapping of China’s landslides based on multi-source data</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>69</volume><issue>3</issue><spage>1477</spage><epage>1495</epage><pages>1477-1495</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><coden>NAHZEL</coden><abstract>Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively characterizing landslide damages. This paper collected and analyzed the historical landslide events data of the past 60 years in China. Validated by the frequencies and distributions of landslides, nine key factors (lithology, convexity, slope gradient, slope aspect, elevation, soil property, vegetation coverage, flow, and fracture) are selected to construct landslide susceptibility (LS) empirical models by back-propagation artificial neural network method. By integrating landslide empirical models with surface multi-source geospatial and remote sensing data, this paper further performs a large-scale LS assessment throughout China. The resulting landslide hazard assessment map of China clearly illustrates the hot spots of the high landslide potential areas, mostly concentrated in the southwest. The study implements a complete framework of multi-source data collecting, processing, modeling, and synthesizing that fulfills the assessment of LS and provides a theoretical basis and practical guide for predicting and mitigating landslide disasters potentially throughout China.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-013-0759-y</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-030X
ispartof Natural hazards (Dordrecht), 2013-12, Vol.69 (3), p.1477-1495
issn 0921-030X
1573-0840
language eng
recordid cdi_proquest_miscellaneous_1506373118
source PAIS Index; SpringerNature Journals
subjects Assessments
China
China (People's Republic)
Civil Engineering
Climate
Climate change
Disaster management
Disaster prevention
Disasters
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Emergency preparedness
Empirical analysis
Engineering and environment geology. Geothermics
Environmental Management
Exact sciences and technology
Extreme weather
Geological hazards
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hazard assessment
Hydrogeology
Landslides
Landslides & mudslides
Lithology
Mapping
Mathematical models
Natural Hazards
Natural hazards: prediction, damages, etc
News
Original Paper
Property
Rainfall
Remote sensing
Soil properties
Vegetation
title Susceptibility evaluation and mapping of China’s landslides based on multi-source data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Susceptibility%20evaluation%20and%20mapping%20of%20China%E2%80%99s%20landslides%20based%20on%20multi-source%20data&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Liu,%20Chun&rft.date=2013-12-01&rft.volume=69&rft.issue=3&rft.spage=1477&rft.epage=1495&rft.pages=1477-1495&rft.issn=0921-030X&rft.eissn=1573-0840&rft.coden=NAHZEL&rft_id=info:doi/10.1007/s11069-013-0759-y&rft_dat=%3Cproquest_cross%3E1504417642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461842416&rft_id=info:pmid/&rfr_iscdi=true