Susceptibility evaluation and mapping of China’s landslides based on multi-source data
Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively c...
Gespeichert in:
Veröffentlicht in: | Natural hazards (Dordrecht) 2013-12, Vol.69 (3), p.1477-1495 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1495 |
---|---|
container_issue | 3 |
container_start_page | 1477 |
container_title | Natural hazards (Dordrecht) |
container_volume | 69 |
creator | Liu, Chun Li, Weiyue Wu, Hangbin Lu, Ping Sang, Kai Sun, Weiwei Chen, Wen Hong, Yang Li, Rongxing |
description | Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively characterizing landslide damages. This paper collected and analyzed the historical landslide events data of the past 60 years in China. Validated by the frequencies and distributions of landslides, nine key factors (lithology, convexity, slope gradient, slope aspect, elevation, soil property, vegetation coverage, flow, and fracture) are selected to construct landslide susceptibility (LS) empirical models by back-propagation artificial neural network method. By integrating landslide empirical models with surface multi-source geospatial and remote sensing data, this paper further performs a large-scale LS assessment throughout China. The resulting landslide hazard assessment map of China clearly illustrates the hot spots of the high landslide potential areas, mostly concentrated in the southwest. The study implements a complete framework of multi-source data collecting, processing, modeling, and synthesizing that fulfills the assessment of LS and provides a theoretical basis and practical guide for predicting and mitigating landslide disasters potentially throughout China. |
doi_str_mv | 10.1007/s11069-013-0759-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506373118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1504417642</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-e846b322c0916b9cdb7473da5c44e144b1557b0002d647e1ab029f2db88a039d3</originalsourceid><addsrcrecordid>eNqNkc1qFUEQhRtR8Bp9AHcNImQzSVX_zizDxZhAIAsVsmu6p3tih7kzk6kZ4e58DV_PJ7HDDUECgquiqO8c6nAYe49wggD2lBDBNBWgrMDqptq_YBvUtmy1gpdsA43ACiTcvGZviO4AEI1oNuzmy0ptmpYccp-XPU8_fL_6JY8D90PkOz9NebjlY8e33_Pgf__8RbwvF-pzTMSDpxR5gXdrv-SKxnVuE49-8W_Zq873lN49ziP27fzT1-1FdXX9-XJ7dlV5JfVSpVqZIIVooUETmjYGq6yMXrdKJVQqoNY2AICIRtmEPoBoOhFDXXuQTZRH7PjgO83j_ZpocbtcEvXlyTSu5FCDkVYi1v-DKoXWKFHQD8_QuxJtKEEcKoO1EgpNofBAtfNINKfOTXPe-XnvENxDLe5Qiyu1uIda3L5oPj46e2p9381-aDM9CUUNqIVWhRMHjsppuE3zXx_80_wPQdadAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461842416</pqid></control><display><type>article</type><title>Susceptibility evaluation and mapping of China’s landslides based on multi-source data</title><source>PAIS Index</source><source>SpringerNature Journals</source><creator>Liu, Chun ; Li, Weiyue ; Wu, Hangbin ; Lu, Ping ; Sang, Kai ; Sun, Weiwei ; Chen, Wen ; Hong, Yang ; Li, Rongxing</creator><creatorcontrib>Liu, Chun ; Li, Weiyue ; Wu, Hangbin ; Lu, Ping ; Sang, Kai ; Sun, Weiwei ; Chen, Wen ; Hong, Yang ; Li, Rongxing</creatorcontrib><description>Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively characterizing landslide damages. This paper collected and analyzed the historical landslide events data of the past 60 years in China. Validated by the frequencies and distributions of landslides, nine key factors (lithology, convexity, slope gradient, slope aspect, elevation, soil property, vegetation coverage, flow, and fracture) are selected to construct landslide susceptibility (LS) empirical models by back-propagation artificial neural network method. By integrating landslide empirical models with surface multi-source geospatial and remote sensing data, this paper further performs a large-scale LS assessment throughout China. The resulting landslide hazard assessment map of China clearly illustrates the hot spots of the high landslide potential areas, mostly concentrated in the southwest. The study implements a complete framework of multi-source data collecting, processing, modeling, and synthesizing that fulfills the assessment of LS and provides a theoretical basis and practical guide for predicting and mitigating landslide disasters potentially throughout China.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-013-0759-y</identifier><identifier>CODEN: NAHZEL</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Assessments ; China ; China (People's Republic) ; Civil Engineering ; Climate ; Climate change ; Disaster management ; Disaster prevention ; Disasters ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Emergency preparedness ; Empirical analysis ; Engineering and environment geology. Geothermics ; Environmental Management ; Exact sciences and technology ; Extreme weather ; Geological hazards ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hazard assessment ; Hydrogeology ; Landslides ; Landslides & mudslides ; Lithology ; Mapping ; Mathematical models ; Natural Hazards ; Natural hazards: prediction, damages, etc ; News ; Original Paper ; Property ; Rainfall ; Remote sensing ; Soil properties ; Vegetation</subject><ispartof>Natural hazards (Dordrecht), 2013-12, Vol.69 (3), p.1477-1495</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-e846b322c0916b9cdb7473da5c44e144b1557b0002d647e1ab029f2db88a039d3</citedby><cites>FETCH-LOGICAL-a435t-e846b322c0916b9cdb7473da5c44e144b1557b0002d647e1ab029f2db88a039d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-013-0759-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-013-0759-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27865,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28015254$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Li, Weiyue</creatorcontrib><creatorcontrib>Wu, Hangbin</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Sang, Kai</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Hong, Yang</creatorcontrib><creatorcontrib>Li, Rongxing</creatorcontrib><title>Susceptibility evaluation and mapping of China’s landslides based on multi-source data</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively characterizing landslide damages. This paper collected and analyzed the historical landslide events data of the past 60 years in China. Validated by the frequencies and distributions of landslides, nine key factors (lithology, convexity, slope gradient, slope aspect, elevation, soil property, vegetation coverage, flow, and fracture) are selected to construct landslide susceptibility (LS) empirical models by back-propagation artificial neural network method. By integrating landslide empirical models with surface multi-source geospatial and remote sensing data, this paper further performs a large-scale LS assessment throughout China. The resulting landslide hazard assessment map of China clearly illustrates the hot spots of the high landslide potential areas, mostly concentrated in the southwest. The study implements a complete framework of multi-source data collecting, processing, modeling, and synthesizing that fulfills the assessment of LS and provides a theoretical basis and practical guide for predicting and mitigating landslide disasters potentially throughout China.</description><subject>Assessments</subject><subject>China</subject><subject>China (People's Republic)</subject><subject>Civil Engineering</subject><subject>Climate</subject><subject>Climate change</subject><subject>Disaster management</subject><subject>Disaster prevention</subject><subject>Disasters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Emergency preparedness</subject><subject>Empirical analysis</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental Management</subject><subject>Exact sciences and technology</subject><subject>Extreme weather</subject><subject>Geological hazards</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hazard assessment</subject><subject>Hydrogeology</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Lithology</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Natural Hazards</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>News</subject><subject>Original Paper</subject><subject>Property</subject><subject>Rainfall</subject><subject>Remote sensing</subject><subject>Soil properties</subject><subject>Vegetation</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>7TQ</sourceid><recordid>eNqNkc1qFUEQhRtR8Bp9AHcNImQzSVX_zizDxZhAIAsVsmu6p3tih7kzk6kZ4e58DV_PJ7HDDUECgquiqO8c6nAYe49wggD2lBDBNBWgrMDqptq_YBvUtmy1gpdsA43ACiTcvGZviO4AEI1oNuzmy0ptmpYccp-XPU8_fL_6JY8D90PkOz9NebjlY8e33_Pgf__8RbwvF-pzTMSDpxR5gXdrv-SKxnVuE49-8W_Zq873lN49ziP27fzT1-1FdXX9-XJ7dlV5JfVSpVqZIIVooUETmjYGq6yMXrdKJVQqoNY2AICIRtmEPoBoOhFDXXuQTZRH7PjgO83j_ZpocbtcEvXlyTSu5FCDkVYi1v-DKoXWKFHQD8_QuxJtKEEcKoO1EgpNofBAtfNINKfOTXPe-XnvENxDLe5Qiyu1uIda3L5oPj46e2p9381-aDM9CUUNqIVWhRMHjsppuE3zXx_80_wPQdadAg</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Liu, Chun</creator><creator>Li, Weiyue</creator><creator>Wu, Hangbin</creator><creator>Lu, Ping</creator><creator>Sang, Kai</creator><creator>Sun, Weiwei</creator><creator>Chen, Wen</creator><creator>Hong, Yang</creator><creator>Li, Rongxing</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>20131201</creationdate><title>Susceptibility evaluation and mapping of China’s landslides based on multi-source data</title><author>Liu, Chun ; Li, Weiyue ; Wu, Hangbin ; Lu, Ping ; Sang, Kai ; Sun, Weiwei ; Chen, Wen ; Hong, Yang ; Li, Rongxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-e846b322c0916b9cdb7473da5c44e144b1557b0002d647e1ab029f2db88a039d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Assessments</topic><topic>China</topic><topic>China (People's Republic)</topic><topic>Civil Engineering</topic><topic>Climate</topic><topic>Climate change</topic><topic>Disaster management</topic><topic>Disaster prevention</topic><topic>Disasters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Emergency preparedness</topic><topic>Empirical analysis</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental Management</topic><topic>Exact sciences and technology</topic><topic>Extreme weather</topic><topic>Geological hazards</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hazard assessment</topic><topic>Hydrogeology</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Lithology</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Natural Hazards</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>News</topic><topic>Original Paper</topic><topic>Property</topic><topic>Rainfall</topic><topic>Remote sensing</topic><topic>Soil properties</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Li, Weiyue</creatorcontrib><creatorcontrib>Wu, Hangbin</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Sang, Kai</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Hong, Yang</creatorcontrib><creatorcontrib>Li, Rongxing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chun</au><au>Li, Weiyue</au><au>Wu, Hangbin</au><au>Lu, Ping</au><au>Sang, Kai</au><au>Sun, Weiwei</au><au>Chen, Wen</au><au>Hong, Yang</au><au>Li, Rongxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Susceptibility evaluation and mapping of China’s landslides based on multi-source data</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>69</volume><issue>3</issue><spage>1477</spage><epage>1495</epage><pages>1477-1495</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><coden>NAHZEL</coden><abstract>Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively characterizing landslide damages. This paper collected and analyzed the historical landslide events data of the past 60 years in China. Validated by the frequencies and distributions of landslides, nine key factors (lithology, convexity, slope gradient, slope aspect, elevation, soil property, vegetation coverage, flow, and fracture) are selected to construct landslide susceptibility (LS) empirical models by back-propagation artificial neural network method. By integrating landslide empirical models with surface multi-source geospatial and remote sensing data, this paper further performs a large-scale LS assessment throughout China. The resulting landslide hazard assessment map of China clearly illustrates the hot spots of the high landslide potential areas, mostly concentrated in the southwest. The study implements a complete framework of multi-source data collecting, processing, modeling, and synthesizing that fulfills the assessment of LS and provides a theoretical basis and practical guide for predicting and mitigating landslide disasters potentially throughout China.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-013-0759-y</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-030X |
ispartof | Natural hazards (Dordrecht), 2013-12, Vol.69 (3), p.1477-1495 |
issn | 0921-030X 1573-0840 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506373118 |
source | PAIS Index; SpringerNature Journals |
subjects | Assessments China China (People's Republic) Civil Engineering Climate Climate change Disaster management Disaster prevention Disasters Earth and Environmental Science Earth Sciences Earth, ocean, space Emergency preparedness Empirical analysis Engineering and environment geology. Geothermics Environmental Management Exact sciences and technology Extreme weather Geological hazards Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hazard assessment Hydrogeology Landslides Landslides & mudslides Lithology Mapping Mathematical models Natural Hazards Natural hazards: prediction, damages, etc News Original Paper Property Rainfall Remote sensing Soil properties Vegetation |
title | Susceptibility evaluation and mapping of China’s landslides based on multi-source data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Susceptibility%20evaluation%20and%20mapping%20of%20China%E2%80%99s%20landslides%20based%20on%20multi-source%20data&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Liu,%20Chun&rft.date=2013-12-01&rft.volume=69&rft.issue=3&rft.spage=1477&rft.epage=1495&rft.pages=1477-1495&rft.issn=0921-030X&rft.eissn=1573-0840&rft.coden=NAHZEL&rft_id=info:doi/10.1007/s11069-013-0759-y&rft_dat=%3Cproquest_cross%3E1504417642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461842416&rft_id=info:pmid/&rfr_iscdi=true |