Limiting Limitants in Dynamic Problems for a Rectangular Prism
An algorithm of solving a quasi-regular infinite system of linear algebraic equations following from a boundary-value problem describing the stationary forced vibrations of an isotropic rectangular prism in the plane linear elastic case is outlined. The algorithm employs Koyalovich’s limitants, whic...
Gespeichert in:
Veröffentlicht in: | International applied mechanics 2013-09, Vol.49 (5), p.555-569 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 569 |
---|---|
container_issue | 5 |
container_start_page | 555 |
container_title | International applied mechanics |
container_volume | 49 |
creator | Papkov, S. O. Chekhov, V. N. |
description | An algorithm of solving a quasi-regular infinite system of linear algebraic equations following from a boundary-value problem describing the stationary forced vibrations of an isotropic rectangular prism in the plane linear elastic case is outlined. The algorithm employs Koyalovich’s limitants, which makes it possible to estimate the upper and lower bounds for the entire infinite set of unknowns and the natural frequencies of the prism. Additionally, the sums of all the functional series in the representation of the solution of the boundary-value problem are found in the rectangular domain |
doi_str_mv | 10.1007/s10778-013-0589-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506372022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A353212382</galeid><sourcerecordid>A353212382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-dd034a9b2a31eb897bc0a22ef3b911d880f271f9243f2b1524fe3cbee7d518013</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9AHezdEO9QBHYmDT1N2miMbomDAMNzQxTYWbRt5c6rg0LTuB8N_cchK4JLAiAuM0EhJAYCMPApcLsBM0IFwxLLulp0XDHsADFz9FFzjsAUEKoGbrfhC4MIW6rX2HikKsQq4dDNF2w1Xvq69Z1ufJ9qkz14WyxbMfWpPIVcneJzrxps7v6u-fo6-nxc_2CN2_Pr-vVBltG6ICbBtjSqJoaRlwtlagtGEqdZ7UipJESPBXEK7pkntaE06V3zNbOiYYTWULN0c00d5_679HlQXchW9e2Jrp-zJrwkk9QoLRYF5N1a1qnQ_T9kIwtp3ElUR-dD-V9xTijhDJ5BMgE2NTnnJzX-xQ6kw6agD6Wq6dyddlDH8vVrDB0YnLxxq1LetePKZYK_oF-AIxje0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506372022</pqid></control><display><type>article</type><title>Limiting Limitants in Dynamic Problems for a Rectangular Prism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Papkov, S. O. ; Chekhov, V. N.</creator><creatorcontrib>Papkov, S. O. ; Chekhov, V. N.</creatorcontrib><description>An algorithm of solving a quasi-regular infinite system of linear algebraic equations following from a boundary-value problem describing the stationary forced vibrations of an isotropic rectangular prism in the plane linear elastic case is outlined. The algorithm employs Koyalovich’s limitants, which makes it possible to estimate the upper and lower bounds for the entire infinite set of unknowns and the natural frequencies of the prism. Additionally, the sums of all the functional series in the representation of the solution of the boundary-value problem are found in the rectangular domain</description><identifier>ISSN: 1063-7095</identifier><identifier>EISSN: 1573-8582</identifier><identifier>DOI: 10.1007/s10778-013-0589-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Classical Mechanics ; Physics ; Physics and Astronomy ; Vibration</subject><ispartof>International applied mechanics, 2013-09, Vol.49 (5), p.555-569</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-dd034a9b2a31eb897bc0a22ef3b911d880f271f9243f2b1524fe3cbee7d518013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10778-013-0589-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10778-013-0589-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Papkov, S. O.</creatorcontrib><creatorcontrib>Chekhov, V. N.</creatorcontrib><title>Limiting Limitants in Dynamic Problems for a Rectangular Prism</title><title>International applied mechanics</title><addtitle>Int Appl Mech</addtitle><description>An algorithm of solving a quasi-regular infinite system of linear algebraic equations following from a boundary-value problem describing the stationary forced vibrations of an isotropic rectangular prism in the plane linear elastic case is outlined. The algorithm employs Koyalovich’s limitants, which makes it possible to estimate the upper and lower bounds for the entire infinite set of unknowns and the natural frequencies of the prism. Additionally, the sums of all the functional series in the representation of the solution of the boundary-value problem are found in the rectangular domain</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Vibration</subject><issn>1063-7095</issn><issn>1573-8582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9AHezdEO9QBHYmDT1N2miMbomDAMNzQxTYWbRt5c6rg0LTuB8N_cchK4JLAiAuM0EhJAYCMPApcLsBM0IFwxLLulp0XDHsADFz9FFzjsAUEKoGbrfhC4MIW6rX2HikKsQq4dDNF2w1Xvq69Z1ufJ9qkz14WyxbMfWpPIVcneJzrxps7v6u-fo6-nxc_2CN2_Pr-vVBltG6ICbBtjSqJoaRlwtlagtGEqdZ7UipJESPBXEK7pkntaE06V3zNbOiYYTWULN0c00d5_679HlQXchW9e2Jrp-zJrwkk9QoLRYF5N1a1qnQ_T9kIwtp3ElUR-dD-V9xTijhDJ5BMgE2NTnnJzX-xQ6kw6agD6Wq6dyddlDH8vVrDB0YnLxxq1LetePKZYK_oF-AIxje0c</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Papkov, S. O.</creator><creator>Chekhov, V. N.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130901</creationdate><title>Limiting Limitants in Dynamic Problems for a Rectangular Prism</title><author>Papkov, S. O. ; Chekhov, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-dd034a9b2a31eb897bc0a22ef3b911d880f271f9243f2b1524fe3cbee7d518013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papkov, S. O.</creatorcontrib><creatorcontrib>Chekhov, V. N.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papkov, S. O.</au><au>Chekhov, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting Limitants in Dynamic Problems for a Rectangular Prism</atitle><jtitle>International applied mechanics</jtitle><stitle>Int Appl Mech</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>49</volume><issue>5</issue><spage>555</spage><epage>569</epage><pages>555-569</pages><issn>1063-7095</issn><eissn>1573-8582</eissn><abstract>An algorithm of solving a quasi-regular infinite system of linear algebraic equations following from a boundary-value problem describing the stationary forced vibrations of an isotropic rectangular prism in the plane linear elastic case is outlined. The algorithm employs Koyalovich’s limitants, which makes it possible to estimate the upper and lower bounds for the entire infinite set of unknowns and the natural frequencies of the prism. Additionally, the sums of all the functional series in the representation of the solution of the boundary-value problem are found in the rectangular domain</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10778-013-0589-3</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7095 |
ispartof | International applied mechanics, 2013-09, Vol.49 (5), p.555-569 |
issn | 1063-7095 1573-8582 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506372022 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Applications of Mathematics Classical Mechanics Physics Physics and Astronomy Vibration |
title | Limiting Limitants in Dynamic Problems for a Rectangular Prism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20Limitants%20in%20Dynamic%20Problems%20for%20a%20Rectangular%20Prism&rft.jtitle=International%20applied%20mechanics&rft.au=Papkov,%20S.%20O.&rft.date=2013-09-01&rft.volume=49&rft.issue=5&rft.spage=555&rft.epage=569&rft.pages=555-569&rft.issn=1063-7095&rft.eissn=1573-8582&rft_id=info:doi/10.1007/s10778-013-0589-3&rft_dat=%3Cgale_proqu%3EA353212382%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506372022&rft_id=info:pmid/&rft_galeid=A353212382&rfr_iscdi=true |