Limiting Limitants in Dynamic Problems for a Rectangular Prism

An algorithm of solving a quasi-regular infinite system of linear algebraic equations following from a boundary-value problem describing the stationary forced vibrations of an isotropic rectangular prism in the plane linear elastic case is outlined. The algorithm employs Koyalovich’s limitants, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International applied mechanics 2013-09, Vol.49 (5), p.555-569
Hauptverfasser: Papkov, S. O., Chekhov, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 5
container_start_page 555
container_title International applied mechanics
container_volume 49
creator Papkov, S. O.
Chekhov, V. N.
description An algorithm of solving a quasi-regular infinite system of linear algebraic equations following from a boundary-value problem describing the stationary forced vibrations of an isotropic rectangular prism in the plane linear elastic case is outlined. The algorithm employs Koyalovich’s limitants, which makes it possible to estimate the upper and lower bounds for the entire infinite set of unknowns and the natural frequencies of the prism. Additionally, the sums of all the functional series in the representation of the solution of the boundary-value problem are found in the rectangular domain
doi_str_mv 10.1007/s10778-013-0589-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506372022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A353212382</galeid><sourcerecordid>A353212382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-dd034a9b2a31eb897bc0a22ef3b911d880f271f9243f2b1524fe3cbee7d518013</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9AHezdEO9QBHYmDT1N2miMbomDAMNzQxTYWbRt5c6rg0LTuB8N_cchK4JLAiAuM0EhJAYCMPApcLsBM0IFwxLLulp0XDHsADFz9FFzjsAUEKoGbrfhC4MIW6rX2HikKsQq4dDNF2w1Xvq69Z1ufJ9qkz14WyxbMfWpPIVcneJzrxps7v6u-fo6-nxc_2CN2_Pr-vVBltG6ICbBtjSqJoaRlwtlagtGEqdZ7UipJESPBXEK7pkntaE06V3zNbOiYYTWULN0c00d5_679HlQXchW9e2Jrp-zJrwkk9QoLRYF5N1a1qnQ_T9kIwtp3ElUR-dD-V9xTijhDJ5BMgE2NTnnJzX-xQ6kw6agD6Wq6dyddlDH8vVrDB0YnLxxq1LetePKZYK_oF-AIxje0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506372022</pqid></control><display><type>article</type><title>Limiting Limitants in Dynamic Problems for a Rectangular Prism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Papkov, S. O. ; Chekhov, V. N.</creator><creatorcontrib>Papkov, S. O. ; Chekhov, V. N.</creatorcontrib><description>An algorithm of solving a quasi-regular infinite system of linear algebraic equations following from a boundary-value problem describing the stationary forced vibrations of an isotropic rectangular prism in the plane linear elastic case is outlined. The algorithm employs Koyalovich’s limitants, which makes it possible to estimate the upper and lower bounds for the entire infinite set of unknowns and the natural frequencies of the prism. Additionally, the sums of all the functional series in the representation of the solution of the boundary-value problem are found in the rectangular domain</description><identifier>ISSN: 1063-7095</identifier><identifier>EISSN: 1573-8582</identifier><identifier>DOI: 10.1007/s10778-013-0589-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Classical Mechanics ; Physics ; Physics and Astronomy ; Vibration</subject><ispartof>International applied mechanics, 2013-09, Vol.49 (5), p.555-569</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-dd034a9b2a31eb897bc0a22ef3b911d880f271f9243f2b1524fe3cbee7d518013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10778-013-0589-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10778-013-0589-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Papkov, S. O.</creatorcontrib><creatorcontrib>Chekhov, V. N.</creatorcontrib><title>Limiting Limitants in Dynamic Problems for a Rectangular Prism</title><title>International applied mechanics</title><addtitle>Int Appl Mech</addtitle><description>An algorithm of solving a quasi-regular infinite system of linear algebraic equations following from a boundary-value problem describing the stationary forced vibrations of an isotropic rectangular prism in the plane linear elastic case is outlined. The algorithm employs Koyalovich’s limitants, which makes it possible to estimate the upper and lower bounds for the entire infinite set of unknowns and the natural frequencies of the prism. Additionally, the sums of all the functional series in the representation of the solution of the boundary-value problem are found in the rectangular domain</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Vibration</subject><issn>1063-7095</issn><issn>1573-8582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9AHezdEO9QBHYmDT1N2miMbomDAMNzQxTYWbRt5c6rg0LTuB8N_cchK4JLAiAuM0EhJAYCMPApcLsBM0IFwxLLulp0XDHsADFz9FFzjsAUEKoGbrfhC4MIW6rX2HikKsQq4dDNF2w1Xvq69Z1ufJ9qkz14WyxbMfWpPIVcneJzrxps7v6u-fo6-nxc_2CN2_Pr-vVBltG6ICbBtjSqJoaRlwtlagtGEqdZ7UipJESPBXEK7pkntaE06V3zNbOiYYTWULN0c00d5_679HlQXchW9e2Jrp-zJrwkk9QoLRYF5N1a1qnQ_T9kIwtp3ElUR-dD-V9xTijhDJ5BMgE2NTnnJzX-xQ6kw6agD6Wq6dyddlDH8vVrDB0YnLxxq1LetePKZYK_oF-AIxje0c</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Papkov, S. O.</creator><creator>Chekhov, V. N.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130901</creationdate><title>Limiting Limitants in Dynamic Problems for a Rectangular Prism</title><author>Papkov, S. O. ; Chekhov, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-dd034a9b2a31eb897bc0a22ef3b911d880f271f9243f2b1524fe3cbee7d518013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papkov, S. O.</creatorcontrib><creatorcontrib>Chekhov, V. N.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papkov, S. O.</au><au>Chekhov, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting Limitants in Dynamic Problems for a Rectangular Prism</atitle><jtitle>International applied mechanics</jtitle><stitle>Int Appl Mech</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>49</volume><issue>5</issue><spage>555</spage><epage>569</epage><pages>555-569</pages><issn>1063-7095</issn><eissn>1573-8582</eissn><abstract>An algorithm of solving a quasi-regular infinite system of linear algebraic equations following from a boundary-value problem describing the stationary forced vibrations of an isotropic rectangular prism in the plane linear elastic case is outlined. The algorithm employs Koyalovich’s limitants, which makes it possible to estimate the upper and lower bounds for the entire infinite set of unknowns and the natural frequencies of the prism. Additionally, the sums of all the functional series in the representation of the solution of the boundary-value problem are found in the rectangular domain</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10778-013-0589-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7095
ispartof International applied mechanics, 2013-09, Vol.49 (5), p.555-569
issn 1063-7095
1573-8582
language eng
recordid cdi_proquest_miscellaneous_1506372022
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Applications of Mathematics
Classical Mechanics
Physics
Physics and Astronomy
Vibration
title Limiting Limitants in Dynamic Problems for a Rectangular Prism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20Limitants%20in%20Dynamic%20Problems%20for%20a%20Rectangular%20Prism&rft.jtitle=International%20applied%20mechanics&rft.au=Papkov,%20S.%20O.&rft.date=2013-09-01&rft.volume=49&rft.issue=5&rft.spage=555&rft.epage=569&rft.pages=555-569&rft.issn=1063-7095&rft.eissn=1573-8582&rft_id=info:doi/10.1007/s10778-013-0589-3&rft_dat=%3Cgale_proqu%3EA353212382%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506372022&rft_id=info:pmid/&rft_galeid=A353212382&rfr_iscdi=true