Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions

Monochromatic synchrotron X-ray diffraction data demonstrate that single-crystal and polycrystalline x Er 2 O 3 · (1 − x )TiO 2 ( x = 0.5–0.6) solid solutions consist of a fluorite-like disordered ( Fm 3 m ) phase and a nanoscale (40–1000 nm) pyrochlore-like ordered phase ( Fd 3 m ) of the same comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic materials 2013-12, Vol.49 (12), p.1213-1219
Hauptverfasser: Lyashenko, L. P., Shcherbakova, L. G., Kulik, E. S., Svetogorov, R. D., Zubavichus, Ya. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1219
container_issue 12
container_start_page 1213
container_title Inorganic materials
container_volume 49
creator Lyashenko, L. P.
Shcherbakova, L. G.
Kulik, E. S.
Svetogorov, R. D.
Zubavichus, Ya. V.
description Monochromatic synchrotron X-ray diffraction data demonstrate that single-crystal and polycrystalline x Er 2 O 3 · (1 − x )TiO 2 ( x = 0.5–0.6) solid solutions consist of a fluorite-like disordered ( Fm 3 m ) phase and a nanoscale (40–1000 nm) pyrochlore-like ordered phase ( Fd 3 m ) of the same composition in the range 0.5 ≤ x ≤ 0.57, coherent with the disordered phase. Reducing the density of structural defects in the unit cell of Er 3 TiO 6.5 ( x = 0.6) leads to a structural transformation of the pyrochlore-like phase into a Ta 2 O 3 -type ordered phase ( Ia 3), derived from the fluorite phase. In the composition range of the solid solutions (0.5 < x < 0.6), the lattice parameter of the fluorite-like phase follows Vegard’s law. The formation of nanodomains with different degrees of order is shown to be caused by the internal strain due to the high density of structural defects in their unit cells.
doi_str_mv 10.1134/S0020168513120108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506370046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506370046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-f94169cd682b340dff4b2b3d1103dd515e7256854588a8a8609e9ea60eb2fec13</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvOUirIfqTNJk26MsfsHCHnYFbyXbJNql26xJe-jN_-A_9JeYUm-CDMwM894b5g0hlwg3iDy9XQMwQJkJ5BgbyI7IBCVkCcc5OyaTAU4G_JSchbADgFRk-YTYdd-U79613jX0NfGqp7qy1quyreIktJ3uqbO0UY0Lre_KtvNG03vPVjzZVCtGZwK-P78k0L2r6dWIXNPg6koPuRv2hHNyYlUdzMVvnZKXh_vN4ilZrh6fF3fLpGQC28TmKcq81DJjW56Ctjbdxk4jAtdaoDBzJqKJeHumYkjITW6UBLNl1pTIp2Q27j1499GZ0Bb7KpSmrlVjXBcKFCD5PJqXkYojtfQuBG9scfDVXvm-QCiGnxZ_fho1bNSEyG3ejC92rvNNdPSP6AcGq3ca</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506370046</pqid></control><display><type>article</type><title>Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions</title><source>Springer Nature - Complete Springer Journals</source><creator>Lyashenko, L. P. ; Shcherbakova, L. G. ; Kulik, E. S. ; Svetogorov, R. D. ; Zubavichus, Ya. V.</creator><creatorcontrib>Lyashenko, L. P. ; Shcherbakova, L. G. ; Kulik, E. S. ; Svetogorov, R. D. ; Zubavichus, Ya. V.</creatorcontrib><description>Monochromatic synchrotron X-ray diffraction data demonstrate that single-crystal and polycrystalline x Er 2 O 3 · (1 − x )TiO 2 ( x = 0.5–0.6) solid solutions consist of a fluorite-like disordered ( Fm 3 m ) phase and a nanoscale (40–1000 nm) pyrochlore-like ordered phase ( Fd 3 m ) of the same composition in the range 0.5 ≤ x ≤ 0.57, coherent with the disordered phase. Reducing the density of structural defects in the unit cell of Er 3 TiO 6.5 ( x = 0.6) leads to a structural transformation of the pyrochlore-like phase into a Ta 2 O 3 -type ordered phase ( Ia 3), derived from the fluorite phase. In the composition range of the solid solutions (0.5 &lt; x &lt; 0.6), the lattice parameter of the fluorite-like phase follows Vegard’s law. The formation of nanodomains with different degrees of order is shown to be caused by the internal strain due to the high density of structural defects in their unit cells.</description><identifier>ISSN: 0020-1685</identifier><identifier>EISSN: 1608-3172</identifier><identifier>DOI: 10.1134/S0020168513120108</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Chemistry ; Chemistry and Materials Science ; Defects ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Materials Science</subject><ispartof>Inorganic materials, 2013-12, Vol.49 (12), p.1213-1219</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-f94169cd682b340dff4b2b3d1103dd515e7256854588a8a8609e9ea60eb2fec13</citedby><cites>FETCH-LOGICAL-c251t-f94169cd682b340dff4b2b3d1103dd515e7256854588a8a8609e9ea60eb2fec13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0020168513120108$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0020168513120108$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Lyashenko, L. P.</creatorcontrib><creatorcontrib>Shcherbakova, L. G.</creatorcontrib><creatorcontrib>Kulik, E. S.</creatorcontrib><creatorcontrib>Svetogorov, R. D.</creatorcontrib><creatorcontrib>Zubavichus, Ya. V.</creatorcontrib><title>Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions</title><title>Inorganic materials</title><addtitle>Inorg Mater</addtitle><description>Monochromatic synchrotron X-ray diffraction data demonstrate that single-crystal and polycrystalline x Er 2 O 3 · (1 − x )TiO 2 ( x = 0.5–0.6) solid solutions consist of a fluorite-like disordered ( Fm 3 m ) phase and a nanoscale (40–1000 nm) pyrochlore-like ordered phase ( Fd 3 m ) of the same composition in the range 0.5 ≤ x ≤ 0.57, coherent with the disordered phase. Reducing the density of structural defects in the unit cell of Er 3 TiO 6.5 ( x = 0.6) leads to a structural transformation of the pyrochlore-like phase into a Ta 2 O 3 -type ordered phase ( Ia 3), derived from the fluorite phase. In the composition range of the solid solutions (0.5 &lt; x &lt; 0.6), the lattice parameter of the fluorite-like phase follows Vegard’s law. The formation of nanodomains with different degrees of order is shown to be caused by the internal strain due to the high density of structural defects in their unit cells.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Defects</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><issn>0020-1685</issn><issn>1608-3172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvOUirIfqTNJk26MsfsHCHnYFbyXbJNql26xJe-jN_-A_9JeYUm-CDMwM894b5g0hlwg3iDy9XQMwQJkJ5BgbyI7IBCVkCcc5OyaTAU4G_JSchbADgFRk-YTYdd-U79613jX0NfGqp7qy1quyreIktJ3uqbO0UY0Lre_KtvNG03vPVjzZVCtGZwK-P78k0L2r6dWIXNPg6koPuRv2hHNyYlUdzMVvnZKXh_vN4ilZrh6fF3fLpGQC28TmKcq81DJjW56Ctjbdxk4jAtdaoDBzJqKJeHumYkjITW6UBLNl1pTIp2Q27j1499GZ0Bb7KpSmrlVjXBcKFCD5PJqXkYojtfQuBG9scfDVXvm-QCiGnxZ_fho1bNSEyG3ejC92rvNNdPSP6AcGq3ca</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Lyashenko, L. P.</creator><creator>Shcherbakova, L. G.</creator><creator>Kulik, E. S.</creator><creator>Svetogorov, R. D.</creator><creator>Zubavichus, Ya. V.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131201</creationdate><title>Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions</title><author>Lyashenko, L. P. ; Shcherbakova, L. G. ; Kulik, E. S. ; Svetogorov, R. D. ; Zubavichus, Ya. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-f94169cd682b340dff4b2b3d1103dd515e7256854588a8a8609e9ea60eb2fec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Defects</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyashenko, L. P.</creatorcontrib><creatorcontrib>Shcherbakova, L. G.</creatorcontrib><creatorcontrib>Kulik, E. S.</creatorcontrib><creatorcontrib>Svetogorov, R. D.</creatorcontrib><creatorcontrib>Zubavichus, Ya. V.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyashenko, L. P.</au><au>Shcherbakova, L. G.</au><au>Kulik, E. S.</au><au>Svetogorov, R. D.</au><au>Zubavichus, Ya. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions</atitle><jtitle>Inorganic materials</jtitle><stitle>Inorg Mater</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>49</volume><issue>12</issue><spage>1213</spage><epage>1219</epage><pages>1213-1219</pages><issn>0020-1685</issn><eissn>1608-3172</eissn><abstract>Monochromatic synchrotron X-ray diffraction data demonstrate that single-crystal and polycrystalline x Er 2 O 3 · (1 − x )TiO 2 ( x = 0.5–0.6) solid solutions consist of a fluorite-like disordered ( Fm 3 m ) phase and a nanoscale (40–1000 nm) pyrochlore-like ordered phase ( Fd 3 m ) of the same composition in the range 0.5 ≤ x ≤ 0.57, coherent with the disordered phase. Reducing the density of structural defects in the unit cell of Er 3 TiO 6.5 ( x = 0.6) leads to a structural transformation of the pyrochlore-like phase into a Ta 2 O 3 -type ordered phase ( Ia 3), derived from the fluorite phase. In the composition range of the solid solutions (0.5 &lt; x &lt; 0.6), the lattice parameter of the fluorite-like phase follows Vegard’s law. The formation of nanodomains with different degrees of order is shown to be caused by the internal strain due to the high density of structural defects in their unit cells.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S0020168513120108</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1685
ispartof Inorganic materials, 2013-12, Vol.49 (12), p.1213-1219
issn 0020-1685
1608-3172
language eng
recordid cdi_proquest_miscellaneous_1506370046
source Springer Nature - Complete Springer Journals
subjects Chemistry
Chemistry and Materials Science
Defects
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Materials Science
title Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchrotron%20X-ray%20diffraction%20study%20of%20nanostructured%20Er2O3-TiO2%20(50%E2%80%9360%20mol%20%25%20Er2O3)%20solid%20solutions&rft.jtitle=Inorganic%20materials&rft.au=Lyashenko,%20L.%20P.&rft.date=2013-12-01&rft.volume=49&rft.issue=12&rft.spage=1213&rft.epage=1219&rft.pages=1213-1219&rft.issn=0020-1685&rft.eissn=1608-3172&rft_id=info:doi/10.1134/S0020168513120108&rft_dat=%3Cproquest_cross%3E1506370046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506370046&rft_id=info:pmid/&rfr_iscdi=true