Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions
Monochromatic synchrotron X-ray diffraction data demonstrate that single-crystal and polycrystalline x Er 2 O 3 · (1 − x )TiO 2 ( x = 0.5–0.6) solid solutions consist of a fluorite-like disordered ( Fm 3 m ) phase and a nanoscale (40–1000 nm) pyrochlore-like ordered phase ( Fd 3 m ) of the same comp...
Gespeichert in:
Veröffentlicht in: | Inorganic materials 2013-12, Vol.49 (12), p.1213-1219 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1219 |
---|---|
container_issue | 12 |
container_start_page | 1213 |
container_title | Inorganic materials |
container_volume | 49 |
creator | Lyashenko, L. P. Shcherbakova, L. G. Kulik, E. S. Svetogorov, R. D. Zubavichus, Ya. V. |
description | Monochromatic synchrotron X-ray diffraction data demonstrate that single-crystal and polycrystalline
x
Er
2
O
3
· (1 −
x
)TiO
2
(
x
= 0.5–0.6) solid solutions consist of a fluorite-like disordered (
Fm
3
m
) phase and a nanoscale (40–1000 nm) pyrochlore-like ordered phase (
Fd
3
m
) of the same composition in the range 0.5 ≤
x
≤ 0.57, coherent with the disordered phase. Reducing the density of structural defects in the unit cell of Er
3
TiO
6.5
(
x
= 0.6) leads to a structural transformation of the pyrochlore-like phase into a Ta
2
O
3
-type ordered phase (
Ia
3), derived from the fluorite phase. In the composition range of the solid solutions (0.5 <
x
< 0.6), the lattice parameter of the fluorite-like phase follows Vegard’s law. The formation of nanodomains with different degrees of order is shown to be caused by the internal strain due to the high density of structural defects in their unit cells. |
doi_str_mv | 10.1134/S0020168513120108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506370046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506370046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-f94169cd682b340dff4b2b3d1103dd515e7256854588a8a8609e9ea60eb2fec13</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvOUirIfqTNJk26MsfsHCHnYFbyXbJNql26xJe-jN_-A_9JeYUm-CDMwM894b5g0hlwg3iDy9XQMwQJkJ5BgbyI7IBCVkCcc5OyaTAU4G_JSchbADgFRk-YTYdd-U79613jX0NfGqp7qy1quyreIktJ3uqbO0UY0Lre_KtvNG03vPVjzZVCtGZwK-P78k0L2r6dWIXNPg6koPuRv2hHNyYlUdzMVvnZKXh_vN4ilZrh6fF3fLpGQC28TmKcq81DJjW56Ctjbdxk4jAtdaoDBzJqKJeHumYkjITW6UBLNl1pTIp2Q27j1499GZ0Bb7KpSmrlVjXBcKFCD5PJqXkYojtfQuBG9scfDVXvm-QCiGnxZ_fho1bNSEyG3ejC92rvNNdPSP6AcGq3ca</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506370046</pqid></control><display><type>article</type><title>Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions</title><source>Springer Nature - Complete Springer Journals</source><creator>Lyashenko, L. P. ; Shcherbakova, L. G. ; Kulik, E. S. ; Svetogorov, R. D. ; Zubavichus, Ya. V.</creator><creatorcontrib>Lyashenko, L. P. ; Shcherbakova, L. G. ; Kulik, E. S. ; Svetogorov, R. D. ; Zubavichus, Ya. V.</creatorcontrib><description>Monochromatic synchrotron X-ray diffraction data demonstrate that single-crystal and polycrystalline
x
Er
2
O
3
· (1 −
x
)TiO
2
(
x
= 0.5–0.6) solid solutions consist of a fluorite-like disordered (
Fm
3
m
) phase and a nanoscale (40–1000 nm) pyrochlore-like ordered phase (
Fd
3
m
) of the same composition in the range 0.5 ≤
x
≤ 0.57, coherent with the disordered phase. Reducing the density of structural defects in the unit cell of Er
3
TiO
6.5
(
x
= 0.6) leads to a structural transformation of the pyrochlore-like phase into a Ta
2
O
3
-type ordered phase (
Ia
3), derived from the fluorite phase. In the composition range of the solid solutions (0.5 <
x
< 0.6), the lattice parameter of the fluorite-like phase follows Vegard’s law. The formation of nanodomains with different degrees of order is shown to be caused by the internal strain due to the high density of structural defects in their unit cells.</description><identifier>ISSN: 0020-1685</identifier><identifier>EISSN: 1608-3172</identifier><identifier>DOI: 10.1134/S0020168513120108</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Chemistry ; Chemistry and Materials Science ; Defects ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Materials Science</subject><ispartof>Inorganic materials, 2013-12, Vol.49 (12), p.1213-1219</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-f94169cd682b340dff4b2b3d1103dd515e7256854588a8a8609e9ea60eb2fec13</citedby><cites>FETCH-LOGICAL-c251t-f94169cd682b340dff4b2b3d1103dd515e7256854588a8a8609e9ea60eb2fec13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0020168513120108$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0020168513120108$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Lyashenko, L. P.</creatorcontrib><creatorcontrib>Shcherbakova, L. G.</creatorcontrib><creatorcontrib>Kulik, E. S.</creatorcontrib><creatorcontrib>Svetogorov, R. D.</creatorcontrib><creatorcontrib>Zubavichus, Ya. V.</creatorcontrib><title>Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions</title><title>Inorganic materials</title><addtitle>Inorg Mater</addtitle><description>Monochromatic synchrotron X-ray diffraction data demonstrate that single-crystal and polycrystalline
x
Er
2
O
3
· (1 −
x
)TiO
2
(
x
= 0.5–0.6) solid solutions consist of a fluorite-like disordered (
Fm
3
m
) phase and a nanoscale (40–1000 nm) pyrochlore-like ordered phase (
Fd
3
m
) of the same composition in the range 0.5 ≤
x
≤ 0.57, coherent with the disordered phase. Reducing the density of structural defects in the unit cell of Er
3
TiO
6.5
(
x
= 0.6) leads to a structural transformation of the pyrochlore-like phase into a Ta
2
O
3
-type ordered phase (
Ia
3), derived from the fluorite phase. In the composition range of the solid solutions (0.5 <
x
< 0.6), the lattice parameter of the fluorite-like phase follows Vegard’s law. The formation of nanodomains with different degrees of order is shown to be caused by the internal strain due to the high density of structural defects in their unit cells.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Defects</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><issn>0020-1685</issn><issn>1608-3172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvOUirIfqTNJk26MsfsHCHnYFbyXbJNql26xJe-jN_-A_9JeYUm-CDMwM894b5g0hlwg3iDy9XQMwQJkJ5BgbyI7IBCVkCcc5OyaTAU4G_JSchbADgFRk-YTYdd-U79613jX0NfGqp7qy1quyreIktJ3uqbO0UY0Lre_KtvNG03vPVjzZVCtGZwK-P78k0L2r6dWIXNPg6koPuRv2hHNyYlUdzMVvnZKXh_vN4ilZrh6fF3fLpGQC28TmKcq81DJjW56Ctjbdxk4jAtdaoDBzJqKJeHumYkjITW6UBLNl1pTIp2Q27j1499GZ0Bb7KpSmrlVjXBcKFCD5PJqXkYojtfQuBG9scfDVXvm-QCiGnxZ_fho1bNSEyG3ejC92rvNNdPSP6AcGq3ca</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Lyashenko, L. P.</creator><creator>Shcherbakova, L. G.</creator><creator>Kulik, E. S.</creator><creator>Svetogorov, R. D.</creator><creator>Zubavichus, Ya. V.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131201</creationdate><title>Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions</title><author>Lyashenko, L. P. ; Shcherbakova, L. G. ; Kulik, E. S. ; Svetogorov, R. D. ; Zubavichus, Ya. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-f94169cd682b340dff4b2b3d1103dd515e7256854588a8a8609e9ea60eb2fec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Defects</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyashenko, L. P.</creatorcontrib><creatorcontrib>Shcherbakova, L. G.</creatorcontrib><creatorcontrib>Kulik, E. S.</creatorcontrib><creatorcontrib>Svetogorov, R. D.</creatorcontrib><creatorcontrib>Zubavichus, Ya. V.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyashenko, L. P.</au><au>Shcherbakova, L. G.</au><au>Kulik, E. S.</au><au>Svetogorov, R. D.</au><au>Zubavichus, Ya. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions</atitle><jtitle>Inorganic materials</jtitle><stitle>Inorg Mater</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>49</volume><issue>12</issue><spage>1213</spage><epage>1219</epage><pages>1213-1219</pages><issn>0020-1685</issn><eissn>1608-3172</eissn><abstract>Monochromatic synchrotron X-ray diffraction data demonstrate that single-crystal and polycrystalline
x
Er
2
O
3
· (1 −
x
)TiO
2
(
x
= 0.5–0.6) solid solutions consist of a fluorite-like disordered (
Fm
3
m
) phase and a nanoscale (40–1000 nm) pyrochlore-like ordered phase (
Fd
3
m
) of the same composition in the range 0.5 ≤
x
≤ 0.57, coherent with the disordered phase. Reducing the density of structural defects in the unit cell of Er
3
TiO
6.5
(
x
= 0.6) leads to a structural transformation of the pyrochlore-like phase into a Ta
2
O
3
-type ordered phase (
Ia
3), derived from the fluorite phase. In the composition range of the solid solutions (0.5 <
x
< 0.6), the lattice parameter of the fluorite-like phase follows Vegard’s law. The formation of nanodomains with different degrees of order is shown to be caused by the internal strain due to the high density of structural defects in their unit cells.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S0020168513120108</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1685 |
ispartof | Inorganic materials, 2013-12, Vol.49 (12), p.1213-1219 |
issn | 0020-1685 1608-3172 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506370046 |
source | Springer Nature - Complete Springer Journals |
subjects | Chemistry Chemistry and Materials Science Defects Industrial Chemistry/Chemical Engineering Inorganic Chemistry Materials Science |
title | Synchrotron X-ray diffraction study of nanostructured Er2O3-TiO2 (50–60 mol % Er2O3) solid solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchrotron%20X-ray%20diffraction%20study%20of%20nanostructured%20Er2O3-TiO2%20(50%E2%80%9360%20mol%20%25%20Er2O3)%20solid%20solutions&rft.jtitle=Inorganic%20materials&rft.au=Lyashenko,%20L.%20P.&rft.date=2013-12-01&rft.volume=49&rft.issue=12&rft.spage=1213&rft.epage=1219&rft.pages=1213-1219&rft.issn=0020-1685&rft.eissn=1608-3172&rft_id=info:doi/10.1134/S0020168513120108&rft_dat=%3Cproquest_cross%3E1506370046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506370046&rft_id=info:pmid/&rfr_iscdi=true |