Collision-Free 4D Trajectory Planning in Unmanned Aerial Vehicles for Assembly and Structure Construction
This paper presents a new system for assembly and structure construction with multiple Unmanned Aerial Vehicles (UAVs) which automatically identifies conflicts among them. The system proposes the most effective solution considering the available computation time. After detecting conflicts between UA...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2014, Vol.73 (1-4), p.783-795 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 795 |
---|---|
container_issue | 1-4 |
container_start_page | 783 |
container_title | Journal of intelligent & robotic systems |
container_volume | 73 |
creator | Alejo, D. Cobano, J. A. Heredia, G. Ollero, A. |
description | This paper presents a new system for assembly and structure construction with multiple Unmanned Aerial Vehicles (UAVs) which automatically identifies conflicts among them. The system proposes the most effective solution considering the available computation time. After detecting conflicts between UAVs, the system resolves them cooperatively using a collision-free 4D trajectory planning algorithm based on a simple one-at-a-time strategy to quickly compute a feasible but non-optimal initial solution and a stochastic optimization technique named Particle Swarm Optimization (PSO) to improve the initial solution. An anytime approach using PSO is applied. It yields trajectories whose quality improves when available computation time increases. Thus, the method could be applied in real-time depending on the available computation time. The method has been validated with simulations in scenarios with multiple UAVs in a common workspace and experiment in an indoor testbed. |
doi_str_mv | 10.1007/s10846-013-9948-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506366731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506366731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-da62be2baff098158eef9a9613463fc0026a6f28607bb64185d6c30f5531c7933</originalsourceid><addsrcrecordid>eNp1kEFrGzEUhEVooG6aH5CboJdelDytVtrV0bhNUgikUDtXoZWfEpm1lEq7EP_7KnUPJZDTY-CbYd4QcsHhkgN0V4VD3yoGXDCt2569nJAFl51g0IL-QBagG86g0eoj-VTKDgB0L_WChFUax1BCiuw6I9L2G11nu0M3pXygP0cbY4iPNES6ifsqcEuXmIMd6QM-BTdioT5luiwF98N4oDZu6a8pz26aM9JViuWvqPmfyam3Y8Hzf_eMbK6_r1e37O7-5sdqececaPXEtlY1AzaD9b5W5LJH9NpqxUWrhHcAjbLKN72CbhhUy3u5VU6Al1Jw12khzsjXY-5zTr9nLJPZh-JwrK9gmovhEpRQqhO8ol_eoLs051jbGd52qpFSclkpfqRcTqVk9OY5h73NB8PBvI5vjuObOr55Hd-8VE9z9JTKxkfM_yW_a_oDabuHnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476255515</pqid></control><display><type>article</type><title>Collision-Free 4D Trajectory Planning in Unmanned Aerial Vehicles for Assembly and Structure Construction</title><source>SpringerLink Journals</source><creator>Alejo, D. ; Cobano, J. A. ; Heredia, G. ; Ollero, A.</creator><creatorcontrib>Alejo, D. ; Cobano, J. A. ; Heredia, G. ; Ollero, A.</creatorcontrib><description>This paper presents a new system for assembly and structure construction with multiple Unmanned Aerial Vehicles (UAVs) which automatically identifies conflicts among them. The system proposes the most effective solution considering the available computation time. After detecting conflicts between UAVs, the system resolves them cooperatively using a collision-free 4D trajectory planning algorithm based on a simple one-at-a-time strategy to quickly compute a feasible but non-optimal initial solution and a stochastic optimization technique named Particle Swarm Optimization (PSO) to improve the initial solution. An anytime approach using PSO is applied. It yields trajectories whose quality improves when available computation time increases. Thus, the method could be applied in real-time depending on the available computation time. The method has been validated with simulations in scenarios with multiple UAVs in a common workspace and experiment in an indoor testbed.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-013-9948-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Control ; Electrical Engineering ; Engineering ; Mechanical Engineering ; Mechatronics ; Robotics</subject><ispartof>Journal of intelligent & robotic systems, 2014, Vol.73 (1-4), p.783-795</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-da62be2baff098158eef9a9613463fc0026a6f28607bb64185d6c30f5531c7933</citedby><cites>FETCH-LOGICAL-c349t-da62be2baff098158eef9a9613463fc0026a6f28607bb64185d6c30f5531c7933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-013-9948-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-013-9948-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alejo, D.</creatorcontrib><creatorcontrib>Cobano, J. A.</creatorcontrib><creatorcontrib>Heredia, G.</creatorcontrib><creatorcontrib>Ollero, A.</creatorcontrib><title>Collision-Free 4D Trajectory Planning in Unmanned Aerial Vehicles for Assembly and Structure Construction</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>This paper presents a new system for assembly and structure construction with multiple Unmanned Aerial Vehicles (UAVs) which automatically identifies conflicts among them. The system proposes the most effective solution considering the available computation time. After detecting conflicts between UAVs, the system resolves them cooperatively using a collision-free 4D trajectory planning algorithm based on a simple one-at-a-time strategy to quickly compute a feasible but non-optimal initial solution and a stochastic optimization technique named Particle Swarm Optimization (PSO) to improve the initial solution. An anytime approach using PSO is applied. It yields trajectories whose quality improves when available computation time increases. Thus, the method could be applied in real-time depending on the available computation time. The method has been validated with simulations in scenarios with multiple UAVs in a common workspace and experiment in an indoor testbed.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFrGzEUhEVooG6aH5CboJdelDytVtrV0bhNUgikUDtXoZWfEpm1lEq7EP_7KnUPJZDTY-CbYd4QcsHhkgN0V4VD3yoGXDCt2569nJAFl51g0IL-QBagG86g0eoj-VTKDgB0L_WChFUax1BCiuw6I9L2G11nu0M3pXygP0cbY4iPNES6ifsqcEuXmIMd6QM-BTdioT5luiwF98N4oDZu6a8pz26aM9JViuWvqPmfyam3Y8Hzf_eMbK6_r1e37O7-5sdqececaPXEtlY1AzaD9b5W5LJH9NpqxUWrhHcAjbLKN72CbhhUy3u5VU6Al1Jw12khzsjXY-5zTr9nLJPZh-JwrK9gmovhEpRQqhO8ol_eoLs051jbGd52qpFSclkpfqRcTqVk9OY5h73NB8PBvI5vjuObOr55Hd-8VE9z9JTKxkfM_yW_a_oDabuHnw</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Alejo, D.</creator><creator>Cobano, J. A.</creator><creator>Heredia, G.</creator><creator>Ollero, A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>2014</creationdate><title>Collision-Free 4D Trajectory Planning in Unmanned Aerial Vehicles for Assembly and Structure Construction</title><author>Alejo, D. ; Cobano, J. A. ; Heredia, G. ; Ollero, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-da62be2baff098158eef9a9613463fc0026a6f28607bb64185d6c30f5531c7933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alejo, D.</creatorcontrib><creatorcontrib>Cobano, J. A.</creatorcontrib><creatorcontrib>Heredia, G.</creatorcontrib><creatorcontrib>Ollero, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Aerospace Database</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alejo, D.</au><au>Cobano, J. A.</au><au>Heredia, G.</au><au>Ollero, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collision-Free 4D Trajectory Planning in Unmanned Aerial Vehicles for Assembly and Structure Construction</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2014</date><risdate>2014</risdate><volume>73</volume><issue>1-4</issue><spage>783</spage><epage>795</epage><pages>783-795</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>This paper presents a new system for assembly and structure construction with multiple Unmanned Aerial Vehicles (UAVs) which automatically identifies conflicts among them. The system proposes the most effective solution considering the available computation time. After detecting conflicts between UAVs, the system resolves them cooperatively using a collision-free 4D trajectory planning algorithm based on a simple one-at-a-time strategy to quickly compute a feasible but non-optimal initial solution and a stochastic optimization technique named Particle Swarm Optimization (PSO) to improve the initial solution. An anytime approach using PSO is applied. It yields trajectories whose quality improves when available computation time increases. Thus, the method could be applied in real-time depending on the available computation time. The method has been validated with simulations in scenarios with multiple UAVs in a common workspace and experiment in an indoor testbed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-013-9948-x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2014, Vol.73 (1-4), p.783-795 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506366731 |
source | SpringerLink Journals |
subjects | Algorithms Artificial Intelligence Control Electrical Engineering Engineering Mechanical Engineering Mechatronics Robotics |
title | Collision-Free 4D Trajectory Planning in Unmanned Aerial Vehicles for Assembly and Structure Construction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collision-Free%204D%20Trajectory%20Planning%20in%20Unmanned%20Aerial%20Vehicles%20for%20Assembly%20and%20Structure%20Construction&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Alejo,%20D.&rft.date=2014&rft.volume=73&rft.issue=1-4&rft.spage=783&rft.epage=795&rft.pages=783-795&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-013-9948-x&rft_dat=%3Cproquest_cross%3E1506366731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1476255515&rft_id=info:pmid/&rfr_iscdi=true |