Quantum effects and anharmonicity in the H2-Li(+)-benzene complex: a model for hydrogen storage materials

Quantum and anharmonic effects are investigated in H2-Li(+)-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2013-12, Vol.139 (23), p.234305-234305
Hauptverfasser: Kolmann, Stephen J, D'Arcy, Jordan H, Jordan, Meredith J T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum and anharmonic effects are investigated in H2-Li(+)-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H2 binding enthalpy estimates, ΔH(bind) (0 K), being 16.5 kJ mol(-1) and 12.4 kJ mol(-1), respectively: 0.1 and 0.6 kJ mol(-1) higher than harmonic values. Zero-point energy effects are 35% of the value of ΔH(bind) (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔHbind (0 K) by at least 6 kJ mol(-1). Harmonic intermolecular binding enthalpies can be corrected by treating the H2 "helicopter" and "ferris wheel" rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H2 molecule is delocalized above the Li(+)-benzene system at 0 K.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4831715