Data Mining Model for the Data Retrieval from Central Server Configuration

A server, which is to keep track of heavy document traffic, is unable to filter the documents that are most relevant and updated for continuous text search queries. This paper focuses on handling continuous text extraction sustaining high document traffic. The main objective is to retrieve recent up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer science & information technology 2013-10, Vol.5 (5), p.177-185
Hauptverfasser: Sridharan, Srivatsan, Malladi, Kausal, Muralitharan, Yamini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 5
container_start_page 177
container_title International journal of computer science & information technology
container_volume 5
creator Sridharan, Srivatsan
Malladi, Kausal
Muralitharan, Yamini
description A server, which is to keep track of heavy document traffic, is unable to filter the documents that are most relevant and updated for continuous text search queries. This paper focuses on handling continuous text extraction sustaining high document traffic. The main objective is to retrieve recent updated documents that are most relevant to the query by applying sliding window technique. Our solution indexes the streamed documents in the main memory with structure based on the principles of inverted file, and processes document arrival and expiration events with incremental threshold-based method. It also ensures elimination of duplicate document retrieval using unsupervised duplicate detection. The documents are ranked based on user feedback and given higher priority for retrieval.
doi_str_mv 10.5121/ijcsit.2013.5514
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506362308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506362308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1164-1fe9a52f7a1a02e4595283fcc0452603cd082471d6d3df3160a90dbef0cec23a3</originalsourceid><addsrcrecordid>eNotkElPwzAQhS0EElXpnaOPXFLGduwmRxSWglohsZwt44yLqzQutluJf09KO5c3y9PT6CPkmsFUMs5u_domn6ccmJhKycozMoJ6JgtRcXV-6kul4JJMUlrDUKVUTMkRebk32dCl732_osvQYkddiDR_I_2_vGGOHvdmWMewoQ32OQ7DO8Y9RtqE3vnVLprsQ39FLpzpEk5OOiafjw8fzbxYvD49N3eLwjKmyoI5rI3kbmaYAY6lrCWvhLN2-IkrELaFipcz1qpWtE4wBaaG9gsdWLRcGDEmN8fcbQw_O0xZb3yy2HWmx7BLmklQQnEB1WCFo9XGkFJEp7fRb0z81Qz0gZw-ktMHcvpATvwBMRxhsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506362308</pqid></control><display><type>article</type><title>Data Mining Model for the Data Retrieval from Central Server Configuration</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sridharan, Srivatsan ; Malladi, Kausal ; Muralitharan, Yamini</creator><creatorcontrib>Sridharan, Srivatsan ; Malladi, Kausal ; Muralitharan, Yamini</creatorcontrib><description>A server, which is to keep track of heavy document traffic, is unable to filter the documents that are most relevant and updated for continuous text search queries. This paper focuses on handling continuous text extraction sustaining high document traffic. The main objective is to retrieve recent updated documents that are most relevant to the query by applying sliding window technique. Our solution indexes the streamed documents in the main memory with structure based on the principles of inverted file, and processes document arrival and expiration events with incremental threshold-based method. It also ensures elimination of duplicate document retrieval using unsupervised duplicate detection. The documents are ranked based on user feedback and given higher priority for retrieval.</description><identifier>ISSN: 0975-4660</identifier><identifier>EISSN: 0975-3826</identifier><identifier>DOI: 10.5121/ijcsit.2013.5514</identifier><language>eng</language><subject>Mathematical models</subject><ispartof>International journal of computer science &amp; information technology, 2013-10, Vol.5 (5), p.177-185</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sridharan, Srivatsan</creatorcontrib><creatorcontrib>Malladi, Kausal</creatorcontrib><creatorcontrib>Muralitharan, Yamini</creatorcontrib><title>Data Mining Model for the Data Retrieval from Central Server Configuration</title><title>International journal of computer science &amp; information technology</title><description>A server, which is to keep track of heavy document traffic, is unable to filter the documents that are most relevant and updated for continuous text search queries. This paper focuses on handling continuous text extraction sustaining high document traffic. The main objective is to retrieve recent updated documents that are most relevant to the query by applying sliding window technique. Our solution indexes the streamed documents in the main memory with structure based on the principles of inverted file, and processes document arrival and expiration events with incremental threshold-based method. It also ensures elimination of duplicate document retrieval using unsupervised duplicate detection. The documents are ranked based on user feedback and given higher priority for retrieval.</description><subject>Mathematical models</subject><issn>0975-4660</issn><issn>0975-3826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkElPwzAQhS0EElXpnaOPXFLGduwmRxSWglohsZwt44yLqzQutluJf09KO5c3y9PT6CPkmsFUMs5u_domn6ccmJhKycozMoJ6JgtRcXV-6kul4JJMUlrDUKVUTMkRebk32dCl732_osvQYkddiDR_I_2_vGGOHvdmWMewoQ32OQ7DO8Y9RtqE3vnVLprsQ39FLpzpEk5OOiafjw8fzbxYvD49N3eLwjKmyoI5rI3kbmaYAY6lrCWvhLN2-IkrELaFipcz1qpWtE4wBaaG9gsdWLRcGDEmN8fcbQw_O0xZb3yy2HWmx7BLmklQQnEB1WCFo9XGkFJEp7fRb0z81Qz0gZw-ktMHcvpATvwBMRxhsg</recordid><startdate>20131031</startdate><enddate>20131031</enddate><creator>Sridharan, Srivatsan</creator><creator>Malladi, Kausal</creator><creator>Muralitharan, Yamini</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131031</creationdate><title>Data Mining Model for the Data Retrieval from Central Server Configuration</title><author>Sridharan, Srivatsan ; Malladi, Kausal ; Muralitharan, Yamini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1164-1fe9a52f7a1a02e4595283fcc0452603cd082471d6d3df3160a90dbef0cec23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Mathematical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Sridharan, Srivatsan</creatorcontrib><creatorcontrib>Malladi, Kausal</creatorcontrib><creatorcontrib>Muralitharan, Yamini</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer science &amp; information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sridharan, Srivatsan</au><au>Malladi, Kausal</au><au>Muralitharan, Yamini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Mining Model for the Data Retrieval from Central Server Configuration</atitle><jtitle>International journal of computer science &amp; information technology</jtitle><date>2013-10-31</date><risdate>2013</risdate><volume>5</volume><issue>5</issue><spage>177</spage><epage>185</epage><pages>177-185</pages><issn>0975-4660</issn><eissn>0975-3826</eissn><abstract>A server, which is to keep track of heavy document traffic, is unable to filter the documents that are most relevant and updated for continuous text search queries. This paper focuses on handling continuous text extraction sustaining high document traffic. The main objective is to retrieve recent updated documents that are most relevant to the query by applying sliding window technique. Our solution indexes the streamed documents in the main memory with structure based on the principles of inverted file, and processes document arrival and expiration events with incremental threshold-based method. It also ensures elimination of duplicate document retrieval using unsupervised duplicate detection. The documents are ranked based on user feedback and given higher priority for retrieval.</abstract><doi>10.5121/ijcsit.2013.5514</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-4660
ispartof International journal of computer science & information technology, 2013-10, Vol.5 (5), p.177-185
issn 0975-4660
0975-3826
language eng
recordid cdi_proquest_miscellaneous_1506362308
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Mathematical models
title Data Mining Model for the Data Retrieval from Central Server Configuration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Mining%20Model%20for%20the%20Data%20Retrieval%20from%20Central%20Server%20Configuration&rft.jtitle=International%20journal%20of%20computer%20science%20&%20information%20technology&rft.au=Sridharan,%20Srivatsan&rft.date=2013-10-31&rft.volume=5&rft.issue=5&rft.spage=177&rft.epage=185&rft.pages=177-185&rft.issn=0975-4660&rft.eissn=0975-3826&rft_id=info:doi/10.5121/ijcsit.2013.5514&rft_dat=%3Cproquest_cross%3E1506362308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506362308&rft_id=info:pmid/&rfr_iscdi=true