Data Mining Model for the Data Retrieval from Central Server Configuration
A server, which is to keep track of heavy document traffic, is unable to filter the documents that are most relevant and updated for continuous text search queries. This paper focuses on handling continuous text extraction sustaining high document traffic. The main objective is to retrieve recent up...
Gespeichert in:
Veröffentlicht in: | International journal of computer science & information technology 2013-10, Vol.5 (5), p.177-185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | 5 |
container_start_page | 177 |
container_title | International journal of computer science & information technology |
container_volume | 5 |
creator | Sridharan, Srivatsan Malladi, Kausal Muralitharan, Yamini |
description | A server, which is to keep track of heavy document traffic, is unable to filter the documents that are most relevant and updated for continuous text search queries. This paper focuses on handling continuous text extraction sustaining high document traffic. The main objective is to retrieve recent updated documents that are most relevant to the query by applying sliding window technique. Our solution indexes the streamed documents in the main memory with structure based on the principles of inverted file, and processes document arrival and expiration events with incremental threshold-based method. It also ensures elimination of duplicate document retrieval using unsupervised duplicate detection. The documents are ranked based on user feedback and given higher priority for retrieval. |
doi_str_mv | 10.5121/ijcsit.2013.5514 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506362308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506362308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1164-1fe9a52f7a1a02e4595283fcc0452603cd082471d6d3df3160a90dbef0cec23a3</originalsourceid><addsrcrecordid>eNotkElPwzAQhS0EElXpnaOPXFLGduwmRxSWglohsZwt44yLqzQutluJf09KO5c3y9PT6CPkmsFUMs5u_domn6ccmJhKycozMoJ6JgtRcXV-6kul4JJMUlrDUKVUTMkRebk32dCl732_osvQYkddiDR_I_2_vGGOHvdmWMewoQ32OQ7DO8Y9RtqE3vnVLprsQ39FLpzpEk5OOiafjw8fzbxYvD49N3eLwjKmyoI5rI3kbmaYAY6lrCWvhLN2-IkrELaFipcz1qpWtE4wBaaG9gsdWLRcGDEmN8fcbQw_O0xZb3yy2HWmx7BLmklQQnEB1WCFo9XGkFJEp7fRb0z81Qz0gZw-ktMHcvpATvwBMRxhsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506362308</pqid></control><display><type>article</type><title>Data Mining Model for the Data Retrieval from Central Server Configuration</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sridharan, Srivatsan ; Malladi, Kausal ; Muralitharan, Yamini</creator><creatorcontrib>Sridharan, Srivatsan ; Malladi, Kausal ; Muralitharan, Yamini</creatorcontrib><description>A server, which is to keep track of heavy document traffic, is unable to filter the documents that are most relevant and updated for continuous text search queries. This paper focuses on handling continuous text extraction sustaining high document traffic. The main objective is to retrieve recent updated documents that are most relevant to the query by applying sliding window technique. Our solution indexes the streamed documents in the main memory with structure based on the principles of inverted file, and processes document arrival and expiration events with incremental threshold-based method. It also ensures elimination of duplicate document retrieval using unsupervised duplicate detection. The documents are ranked based on user feedback and given higher priority for retrieval.</description><identifier>ISSN: 0975-4660</identifier><identifier>EISSN: 0975-3826</identifier><identifier>DOI: 10.5121/ijcsit.2013.5514</identifier><language>eng</language><subject>Mathematical models</subject><ispartof>International journal of computer science & information technology, 2013-10, Vol.5 (5), p.177-185</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sridharan, Srivatsan</creatorcontrib><creatorcontrib>Malladi, Kausal</creatorcontrib><creatorcontrib>Muralitharan, Yamini</creatorcontrib><title>Data Mining Model for the Data Retrieval from Central Server Configuration</title><title>International journal of computer science & information technology</title><description>A server, which is to keep track of heavy document traffic, is unable to filter the documents that are most relevant and updated for continuous text search queries. This paper focuses on handling continuous text extraction sustaining high document traffic. The main objective is to retrieve recent updated documents that are most relevant to the query by applying sliding window technique. Our solution indexes the streamed documents in the main memory with structure based on the principles of inverted file, and processes document arrival and expiration events with incremental threshold-based method. It also ensures elimination of duplicate document retrieval using unsupervised duplicate detection. The documents are ranked based on user feedback and given higher priority for retrieval.</description><subject>Mathematical models</subject><issn>0975-4660</issn><issn>0975-3826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkElPwzAQhS0EElXpnaOPXFLGduwmRxSWglohsZwt44yLqzQutluJf09KO5c3y9PT6CPkmsFUMs5u_domn6ccmJhKycozMoJ6JgtRcXV-6kul4JJMUlrDUKVUTMkRebk32dCl732_osvQYkddiDR_I_2_vGGOHvdmWMewoQ32OQ7DO8Y9RtqE3vnVLprsQ39FLpzpEk5OOiafjw8fzbxYvD49N3eLwjKmyoI5rI3kbmaYAY6lrCWvhLN2-IkrELaFipcz1qpWtE4wBaaG9gsdWLRcGDEmN8fcbQw_O0xZb3yy2HWmx7BLmklQQnEB1WCFo9XGkFJEp7fRb0z81Qz0gZw-ktMHcvpATvwBMRxhsg</recordid><startdate>20131031</startdate><enddate>20131031</enddate><creator>Sridharan, Srivatsan</creator><creator>Malladi, Kausal</creator><creator>Muralitharan, Yamini</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131031</creationdate><title>Data Mining Model for the Data Retrieval from Central Server Configuration</title><author>Sridharan, Srivatsan ; Malladi, Kausal ; Muralitharan, Yamini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1164-1fe9a52f7a1a02e4595283fcc0452603cd082471d6d3df3160a90dbef0cec23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Mathematical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Sridharan, Srivatsan</creatorcontrib><creatorcontrib>Malladi, Kausal</creatorcontrib><creatorcontrib>Muralitharan, Yamini</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer science & information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sridharan, Srivatsan</au><au>Malladi, Kausal</au><au>Muralitharan, Yamini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Mining Model for the Data Retrieval from Central Server Configuration</atitle><jtitle>International journal of computer science & information technology</jtitle><date>2013-10-31</date><risdate>2013</risdate><volume>5</volume><issue>5</issue><spage>177</spage><epage>185</epage><pages>177-185</pages><issn>0975-4660</issn><eissn>0975-3826</eissn><abstract>A server, which is to keep track of heavy document traffic, is unable to filter the documents that are most relevant and updated for continuous text search queries. This paper focuses on handling continuous text extraction sustaining high document traffic. The main objective is to retrieve recent updated documents that are most relevant to the query by applying sliding window technique. Our solution indexes the streamed documents in the main memory with structure based on the principles of inverted file, and processes document arrival and expiration events with incremental threshold-based method. It also ensures elimination of duplicate document retrieval using unsupervised duplicate detection. The documents are ranked based on user feedback and given higher priority for retrieval.</abstract><doi>10.5121/ijcsit.2013.5514</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-4660 |
ispartof | International journal of computer science & information technology, 2013-10, Vol.5 (5), p.177-185 |
issn | 0975-4660 0975-3826 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506362308 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Mathematical models |
title | Data Mining Model for the Data Retrieval from Central Server Configuration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Mining%20Model%20for%20the%20Data%20Retrieval%20from%20Central%20Server%20Configuration&rft.jtitle=International%20journal%20of%20computer%20science%20&%20information%20technology&rft.au=Sridharan,%20Srivatsan&rft.date=2013-10-31&rft.volume=5&rft.issue=5&rft.spage=177&rft.epage=185&rft.pages=177-185&rft.issn=0975-4660&rft.eissn=0975-3826&rft_id=info:doi/10.5121/ijcsit.2013.5514&rft_dat=%3Cproquest_cross%3E1506362308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506362308&rft_id=info:pmid/&rfr_iscdi=true |