Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator

Smart material electrohydrostatic actuator based on giant magnetostrictive transducer can meet the requirements of smaller vehicles like the unmanned combat air vehicle as well as in rotating environments like helicopter rotors. In order to analyze and improve the performance of smart material elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent material systems and structures 2014-02, Vol.25 (3), p.378-388
Hauptverfasser: Li, Yuesong, Zhu, Yuchuan, Wu, Hongtao, Tang, Dunbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 3
container_start_page 378
container_title Journal of intelligent material systems and structures
container_volume 25
creator Li, Yuesong
Zhu, Yuchuan
Wu, Hongtao
Tang, Dunbing
description Smart material electrohydrostatic actuator based on giant magnetostrictive transducer can meet the requirements of smaller vehicles like the unmanned combat air vehicle as well as in rotating environments like helicopter rotors. In order to analyze and improve the performance of smart material electrohydrostatic actuator, the dynamic hysteresis nonlinear model of giant magnetostrictive transducer is developed based on the relationship between complex permeability and magnetic energy power loss in giant magnetostrictive material, and the inverse model is also derived to design the inverse compensator for improving the linearity of giant magnetostrictive transducer. The experiments show that with the help of inverse compensator, phase lag between the input control signal and the output displacement of giant magnetostrictive transducer is decreased. In addition, the simulation results show that because of the effect of inverse compensator, the flow rate is increased and the growth rate increases with the increase of excitation frequency.
doi_str_mv 10.1177/1045389X13498311
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506359307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X13498311</sage_id><sourcerecordid>1506359307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-40b30a539603f20a9c7b2354b389c8821ab881b84bdce818984d47bb912a486e3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYso-Hn3mIvgpZppkm16FPELFC8K3so0na6RblKTVPDg_26WFQ-CpxmY937Me0VxDPwMoK7PgUsldPMCQjZaAGwVe6AELzUIvZ33fC7X991iP8Y3zkErLvaKrwff02jdkqHrmXUfFCIx41cTuYjJescGH9jSoktshUtHyccUrEn2g1gK6GI_GwoMp2m0tEawuMKwFicKFkdGI5kU_OtnH7I1Mw1Dk2ZMPhwWOwOOkY5-5kHxfH31dHlb3j_e3F1e3JdGqjqVkneCoxLNgouh4tiYuquEkl0OZLSuADutodOy6w1p0I2Wvay7roEKpV6QOChON9wp-PeZYmpXNhoaR3Tk59iC4guhGsHrLOUbqcnfxkBDOwWbA322wNt10-3fprPl5IeO0eA45FKMjb--SldKgpZZV250EZfUvvk5uBz6f-43uyuNyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506359307</pqid></control><display><type>article</type><title>Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator</title><source>Access via SAGE</source><creator>Li, Yuesong ; Zhu, Yuchuan ; Wu, Hongtao ; Tang, Dunbing</creator><creatorcontrib>Li, Yuesong ; Zhu, Yuchuan ; Wu, Hongtao ; Tang, Dunbing</creatorcontrib><description>Smart material electrohydrostatic actuator based on giant magnetostrictive transducer can meet the requirements of smaller vehicles like the unmanned combat air vehicle as well as in rotating environments like helicopter rotors. In order to analyze and improve the performance of smart material electrohydrostatic actuator, the dynamic hysteresis nonlinear model of giant magnetostrictive transducer is developed based on the relationship between complex permeability and magnetic energy power loss in giant magnetostrictive material, and the inverse model is also derived to design the inverse compensator for improving the linearity of giant magnetostrictive transducer. The experiments show that with the help of inverse compensator, phase lag between the input control signal and the output displacement of giant magnetostrictive transducer is decreased. In addition, the simulation results show that because of the effect of inverse compensator, the flow rate is increased and the growth rate increases with the increase of excitation frequency.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X13498311</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Actuators ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetic properties and materials ; Magnetomechanical and magnetoelectric effects, magnetostriction ; Physics ; Transducers</subject><ispartof>Journal of intelligent material systems and structures, 2014-02, Vol.25 (3), p.378-388</ispartof><rights>The Author(s) 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-40b30a539603f20a9c7b2354b389c8821ab881b84bdce818984d47bb912a486e3</citedby><cites>FETCH-LOGICAL-c457t-40b30a539603f20a9c7b2354b389c8821ab881b84bdce818984d47bb912a486e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X13498311$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X13498311$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,782,786,21826,27931,27932,43628,43629</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28254184$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuesong</creatorcontrib><creatorcontrib>Zhu, Yuchuan</creatorcontrib><creatorcontrib>Wu, Hongtao</creatorcontrib><creatorcontrib>Tang, Dunbing</creatorcontrib><title>Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator</title><title>Journal of intelligent material systems and structures</title><description>Smart material electrohydrostatic actuator based on giant magnetostrictive transducer can meet the requirements of smaller vehicles like the unmanned combat air vehicle as well as in rotating environments like helicopter rotors. In order to analyze and improve the performance of smart material electrohydrostatic actuator, the dynamic hysteresis nonlinear model of giant magnetostrictive transducer is developed based on the relationship between complex permeability and magnetic energy power loss in giant magnetostrictive material, and the inverse model is also derived to design the inverse compensator for improving the linearity of giant magnetostrictive transducer. The experiments show that with the help of inverse compensator, phase lag between the input control signal and the output displacement of giant magnetostrictive transducer is decreased. In addition, the simulation results show that because of the effect of inverse compensator, the flow rate is increased and the growth rate increases with the increase of excitation frequency.</description><subject>Actuators</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetic properties and materials</subject><subject>Magnetomechanical and magnetoelectric effects, magnetostriction</subject><subject>Physics</subject><subject>Transducers</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYso-Hn3mIvgpZppkm16FPELFC8K3so0na6RblKTVPDg_26WFQ-CpxmY937Me0VxDPwMoK7PgUsldPMCQjZaAGwVe6AELzUIvZ33fC7X991iP8Y3zkErLvaKrwff02jdkqHrmXUfFCIx41cTuYjJescGH9jSoktshUtHyccUrEn2g1gK6GI_GwoMp2m0tEawuMKwFicKFkdGI5kU_OtnH7I1Mw1Dk2ZMPhwWOwOOkY5-5kHxfH31dHlb3j_e3F1e3JdGqjqVkneCoxLNgouh4tiYuquEkl0OZLSuADutodOy6w1p0I2Wvay7roEKpV6QOChON9wp-PeZYmpXNhoaR3Tk59iC4guhGsHrLOUbqcnfxkBDOwWbA322wNt10-3fprPl5IeO0eA45FKMjb--SldKgpZZV250EZfUvvk5uBz6f-43uyuNyg</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Li, Yuesong</creator><creator>Zhu, Yuchuan</creator><creator>Wu, Hongtao</creator><creator>Tang, Dunbing</creator><general>SAGE Publications</general><general>Sage Publications</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140201</creationdate><title>Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator</title><author>Li, Yuesong ; Zhu, Yuchuan ; Wu, Hongtao ; Tang, Dunbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-40b30a539603f20a9c7b2354b389c8821ab881b84bdce818984d47bb912a486e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuators</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetic properties and materials</topic><topic>Magnetomechanical and magnetoelectric effects, magnetostriction</topic><topic>Physics</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuesong</creatorcontrib><creatorcontrib>Zhu, Yuchuan</creatorcontrib><creatorcontrib>Wu, Hongtao</creatorcontrib><creatorcontrib>Tang, Dunbing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuesong</au><au>Zhu, Yuchuan</au><au>Wu, Hongtao</au><au>Tang, Dunbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>25</volume><issue>3</issue><spage>378</spage><epage>388</epage><pages>378-388</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>Smart material electrohydrostatic actuator based on giant magnetostrictive transducer can meet the requirements of smaller vehicles like the unmanned combat air vehicle as well as in rotating environments like helicopter rotors. In order to analyze and improve the performance of smart material electrohydrostatic actuator, the dynamic hysteresis nonlinear model of giant magnetostrictive transducer is developed based on the relationship between complex permeability and magnetic energy power loss in giant magnetostrictive material, and the inverse model is also derived to design the inverse compensator for improving the linearity of giant magnetostrictive transducer. The experiments show that with the help of inverse compensator, phase lag between the input control signal and the output displacement of giant magnetostrictive transducer is decreased. In addition, the simulation results show that because of the effect of inverse compensator, the flow rate is increased and the growth rate increases with the increase of excitation frequency.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X13498311</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-389X
ispartof Journal of intelligent material systems and structures, 2014-02, Vol.25 (3), p.378-388
issn 1045-389X
1530-8138
language eng
recordid cdi_proquest_miscellaneous_1506359307
source Access via SAGE
subjects Actuators
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Magnetic properties and materials
Magnetomechanical and magnetoelectric effects, magnetostriction
Physics
Transducers
title Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T09%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20inverse%20compensation%20for%20giant%20magnetostrictive%20transducer%20applied%20in%20smart%20material%20electrohydrostatic%20actuator&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Li,%20Yuesong&rft.date=2014-02-01&rft.volume=25&rft.issue=3&rft.spage=378&rft.epage=388&rft.pages=378-388&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X13498311&rft_dat=%3Cproquest_cross%3E1506359307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506359307&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X13498311&rfr_iscdi=true