Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise
In this work, we introduce a new method to prove the existence and uniqueness of a variational solution to the stochastic nonlinear diffusion equation where is a bounded and open domain in and W ( t ) is a Wiener process of the form and are independent Brownian motions. This is a stochastic diffusio...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2013-09, Vol.209 (3), p.797-834 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 834 |
---|---|
container_issue | 3 |
container_start_page | 797 |
container_title | Archive for rational mechanics and analysis |
container_volume | 209 |
creator | Barbu, Viorel Röckner, Michael |
description | In this work, we introduce a new method to prove the existence and uniqueness of a variational solution to the stochastic nonlinear diffusion equation
where
is a bounded and open domain in
and
W
(
t
) is a Wiener process of the form
and
are independent Brownian motions. This is a stochastic diffusion equation with a highly singular diffusivity term. One main result established here is that for all initial conditions in
, it is well posed in a class of continuous solutions to the corresponding stochastic variational inequality. Thus, one obtains a stochastic version of the (minimal) total variation flow. The new approach developed here also allows us to prove the finite time extinction of solutions in dimensions
, which is another main result of this work. |
doi_str_mv | 10.1007/s00205-013-0632-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506358613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2998022671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ab9622ac3ed3643c47b1996e56035d31c7f1d088ea0ec137325a3d009062438c3</originalsourceid><addsrcrecordid>eNp1kU1PHDEMhqMKpC7QH9BbpF56meLEk8zMEaHSIi0tEh_XKJvxlqBhsiQZuvvvybIIVZU42Zafxwe_jH0W8E0ANMcJQIKqQGAFGmW1_sBmoi4N6Ab32AwAsOqUbD6yg5Tut6NEPWObqxzcnU3ZO35ro7fZh9EO_Hykx8kOPntK3I49P1mtBu9e1onnwPMd8euQC_qm8bMh_OWXFPMUF9TzxYbP_Ug28otpyP7VfyL-K_hER2x_aYdEn17rIbs5-359-rOa__5xfnoyrxzWXa7sotNSWofUo67R1c1CdJ0mpQFVj8I1S9FD25IFcgIblMpiD9CBljW2Dg_Z193dVQyPE6VsHnxyNAx2pDAlI1R5mGq1wIJ--Q-9D1Ms7ygU6lbVNSpdKLGjXAwpRVqaVfQPNm6MALMNw-zCMCUMsw3DrIsjd04q7PiH4j-X35WeAfA5jWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1368544356</pqid></control><display><type>article</type><title>Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise</title><source>SpringerLink Journals - AutoHoldings</source><creator>Barbu, Viorel ; Röckner, Michael</creator><creatorcontrib>Barbu, Viorel ; Röckner, Michael</creatorcontrib><description>In this work, we introduce a new method to prove the existence and uniqueness of a variational solution to the stochastic nonlinear diffusion equation
where
is a bounded and open domain in
and
W
(
t
) is a Wiener process of the form
and
are independent Brownian motions. This is a stochastic diffusion equation with a highly singular diffusivity term. One main result established here is that for all initial conditions in
, it is well posed in a class of continuous solutions to the corresponding stochastic variational inequality. Thus, one obtains a stochastic version of the (minimal) total variation flow. The new approach developed here also allows us to prove the finite time extinction of solutions in dimensions
, which is another main result of this work.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-013-0632-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Brownian motion ; Classical Mechanics ; Complex Systems ; Fluid- and Aerodynamics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2013-09, Vol.209 (3), p.797-834</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ab9622ac3ed3643c47b1996e56035d31c7f1d088ea0ec137325a3d009062438c3</citedby><cites>FETCH-LOGICAL-c349t-ab9622ac3ed3643c47b1996e56035d31c7f1d088ea0ec137325a3d009062438c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-013-0632-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-013-0632-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Barbu, Viorel</creatorcontrib><creatorcontrib>Röckner, Michael</creatorcontrib><title>Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>In this work, we introduce a new method to prove the existence and uniqueness of a variational solution to the stochastic nonlinear diffusion equation
where
is a bounded and open domain in
and
W
(
t
) is a Wiener process of the form
and
are independent Brownian motions. This is a stochastic diffusion equation with a highly singular diffusivity term. One main result established here is that for all initial conditions in
, it is well posed in a class of continuous solutions to the corresponding stochastic variational inequality. Thus, one obtains a stochastic version of the (minimal) total variation flow. The new approach developed here also allows us to prove the finite time extinction of solutions in dimensions
, which is another main result of this work.</description><subject>Brownian motion</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1PHDEMhqMKpC7QH9BbpF56meLEk8zMEaHSIi0tEh_XKJvxlqBhsiQZuvvvybIIVZU42Zafxwe_jH0W8E0ANMcJQIKqQGAFGmW1_sBmoi4N6Ab32AwAsOqUbD6yg5Tut6NEPWObqxzcnU3ZO35ro7fZh9EO_Hykx8kOPntK3I49P1mtBu9e1onnwPMd8euQC_qm8bMh_OWXFPMUF9TzxYbP_Ug28otpyP7VfyL-K_hER2x_aYdEn17rIbs5-359-rOa__5xfnoyrxzWXa7sotNSWofUo67R1c1CdJ0mpQFVj8I1S9FD25IFcgIblMpiD9CBljW2Dg_Z193dVQyPE6VsHnxyNAx2pDAlI1R5mGq1wIJ--Q-9D1Ms7ygU6lbVNSpdKLGjXAwpRVqaVfQPNm6MALMNw-zCMCUMsw3DrIsjd04q7PiH4j-X35WeAfA5jWM</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Barbu, Viorel</creator><creator>Röckner, Michael</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130901</creationdate><title>Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise</title><author>Barbu, Viorel ; Röckner, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ab9622ac3ed3643c47b1996e56035d31c7f1d088ea0ec137325a3d009062438c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Brownian motion</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbu, Viorel</creatorcontrib><creatorcontrib>Röckner, Michael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbu, Viorel</au><au>Röckner, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>209</volume><issue>3</issue><spage>797</spage><epage>834</epage><pages>797-834</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>In this work, we introduce a new method to prove the existence and uniqueness of a variational solution to the stochastic nonlinear diffusion equation
where
is a bounded and open domain in
and
W
(
t
) is a Wiener process of the form
and
are independent Brownian motions. This is a stochastic diffusion equation with a highly singular diffusivity term. One main result established here is that for all initial conditions in
, it is well posed in a class of continuous solutions to the corresponding stochastic variational inequality. Thus, one obtains a stochastic version of the (minimal) total variation flow. The new approach developed here also allows us to prove the finite time extinction of solutions in dimensions
, which is another main result of this work.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00205-013-0632-x</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2013-09, Vol.209 (3), p.797-834 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506358613 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brownian motion Classical Mechanics Complex Systems Fluid- and Aerodynamics Mathematical and Computational Physics Physics Physics and Astronomy Theoretical |
title | Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Variational%20Inequalities%20and%20Applications%20to%20the%20Total%20Variation%20Flow%20Perturbed%20by%20Linear%20Multiplicative%20Noise&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Barbu,%20Viorel&rft.date=2013-09-01&rft.volume=209&rft.issue=3&rft.spage=797&rft.epage=834&rft.pages=797-834&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-013-0632-x&rft_dat=%3Cproquest_cross%3E2998022671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1368544356&rft_id=info:pmid/&rfr_iscdi=true |