Blow-up solutions in one-dimensional diffusion models

A sufficient and necessary condition for the existence of blow-up solutions of a certain class of nonlinear Volterra integral equations with kernels arising from various diffusion models and with nonlinearities satisfying the condition g(0)=0 is given in the form of the so-called generalized Osgood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2014-01, Vol.95, p.632-638
1. Verfasser: MaAolepszy, Tomasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 638
container_issue
container_start_page 632
container_title Nonlinear analysis
container_volume 95
creator MaAolepszy, Tomasz
description A sufficient and necessary condition for the existence of blow-up solutions of a certain class of nonlinear Volterra integral equations with kernels arising from various diffusion models and with nonlinearities satisfying the condition g(0)=0 is given in the form of the so-called generalized Osgood condition. Such nonlinearities were not permitted in the original articles of Olmstead and Roberts where these diffusion models were introduced.
doi_str_mv 10.1016/j.na.2013.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506354064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X13003398</els_id><sourcerecordid>1506354064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3ba4f982b5601e1e7598b0a0a3e5fd33be2929ed00dc3a23fdfdacfb5edc14193</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouH7cPfboJXWSNO3Wmy5-wYIXBW8hTSaQpU3WpFX8721Zr55m5vHewPsRcsWgZMDqm10ZdMmBifksAeQRWbF1I6jkTB6TFYiaU1nVH6fkLOcdALBG1Csi7_v4Tad9kWM_jT6GXPhQxIDU-gFDnhXdF9Y7Ny17MUSLfb4gJ073GS__5jl5f3x42zzT7evTy-ZuS43gzUhFpyvXrnkna2DIsJHtugMNWqB0VogOectbtADWCM2Fs85q4zqJ1rCKteKcXB_-7lP8nDCPavDZYN_rgHHKikmohaygrmYrHKwmxZwTOrVPftDpRzFQCyG1U0GrhdCizITmyO0hMjfCL49JZeMxGLQ-oRmVjf7_8C8XB23k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506354064</pqid></control><display><type>article</type><title>Blow-up solutions in one-dimensional diffusion models</title><source>Elsevier ScienceDirect Journals</source><creator>MaAolepszy, Tomasz</creator><creatorcontrib>MaAolepszy, Tomasz</creatorcontrib><description>A sufficient and necessary condition for the existence of blow-up solutions of a certain class of nonlinear Volterra integral equations with kernels arising from various diffusion models and with nonlinearities satisfying the condition g(0)=0 is given in the form of the so-called generalized Osgood condition. Such nonlinearities were not permitted in the original articles of Olmstead and Roberts where these diffusion models were introduced.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2013.10.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Blow-up solutions ; Diffusion ; Fractional diffusion models ; Volterra integral equation</subject><ispartof>Nonlinear analysis, 2014-01, Vol.95, p.632-638</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3ba4f982b5601e1e7598b0a0a3e5fd33be2929ed00dc3a23fdfdacfb5edc14193</citedby><cites>FETCH-LOGICAL-c327t-3ba4f982b5601e1e7598b0a0a3e5fd33be2929ed00dc3a23fdfdacfb5edc14193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X13003398$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>MaAolepszy, Tomasz</creatorcontrib><title>Blow-up solutions in one-dimensional diffusion models</title><title>Nonlinear analysis</title><description>A sufficient and necessary condition for the existence of blow-up solutions of a certain class of nonlinear Volterra integral equations with kernels arising from various diffusion models and with nonlinearities satisfying the condition g(0)=0 is given in the form of the so-called generalized Osgood condition. Such nonlinearities were not permitted in the original articles of Olmstead and Roberts where these diffusion models were introduced.</description><subject>Blow-up solutions</subject><subject>Diffusion</subject><subject>Fractional diffusion models</subject><subject>Volterra integral equation</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouH7cPfboJXWSNO3Wmy5-wYIXBW8hTSaQpU3WpFX8721Zr55m5vHewPsRcsWgZMDqm10ZdMmBifksAeQRWbF1I6jkTB6TFYiaU1nVH6fkLOcdALBG1Csi7_v4Tad9kWM_jT6GXPhQxIDU-gFDnhXdF9Y7Ny17MUSLfb4gJ073GS__5jl5f3x42zzT7evTy-ZuS43gzUhFpyvXrnkna2DIsJHtugMNWqB0VogOectbtADWCM2Fs85q4zqJ1rCKteKcXB_-7lP8nDCPavDZYN_rgHHKikmohaygrmYrHKwmxZwTOrVPftDpRzFQCyG1U0GrhdCizITmyO0hMjfCL49JZeMxGLQ-oRmVjf7_8C8XB23k</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>MaAolepszy, Tomasz</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Blow-up solutions in one-dimensional diffusion models</title><author>MaAolepszy, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3ba4f982b5601e1e7598b0a0a3e5fd33be2929ed00dc3a23fdfdacfb5edc14193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blow-up solutions</topic><topic>Diffusion</topic><topic>Fractional diffusion models</topic><topic>Volterra integral equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MaAolepszy, Tomasz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MaAolepszy, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blow-up solutions in one-dimensional diffusion models</atitle><jtitle>Nonlinear analysis</jtitle><date>2014-01</date><risdate>2014</risdate><volume>95</volume><spage>632</spage><epage>638</epage><pages>632-638</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>A sufficient and necessary condition for the existence of blow-up solutions of a certain class of nonlinear Volterra integral equations with kernels arising from various diffusion models and with nonlinearities satisfying the condition g(0)=0 is given in the form of the so-called generalized Osgood condition. Such nonlinearities were not permitted in the original articles of Olmstead and Roberts where these diffusion models were introduced.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2013.10.005</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2014-01, Vol.95, p.632-638
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1506354064
source Elsevier ScienceDirect Journals
subjects Blow-up solutions
Diffusion
Fractional diffusion models
Volterra integral equation
title Blow-up solutions in one-dimensional diffusion models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blow-up%20solutions%20in%20one-dimensional%20diffusion%20models&rft.jtitle=Nonlinear%20analysis&rft.au=MaAolepszy,%20Tomasz&rft.date=2014-01&rft.volume=95&rft.spage=632&rft.epage=638&rft.pages=632-638&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2013.10.005&rft_dat=%3Cproquest_cross%3E1506354064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506354064&rft_id=info:pmid/&rft_els_id=S0362546X13003398&rfr_iscdi=true