Eigenvalue estimates for submanifolds of warped product spaces

In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn ×f Qq, where f ∈ C∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2014-01, Vol.156 (1), p.25-42
Hauptverfasser: BESSA, G. P., GARCÍA–MARTÍNEZ, S. C., MARI, L., RAMIREZ–OSPINA, H. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 25
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 156
creator BESSA, G. P.
GARCÍA–MARTÍNEZ, S. C.
MARI, L.
RAMIREZ–OSPINA, H. F.
description In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn ×f Qq, where f ∈ C∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyperbolic spaces where most of these examples are not covered in the literature. Applications also include the study of the essential spectrum of hyperbolic graphs over compact regions of the boundary at infinity.
doi_str_mv 10.1017/S0305004113000443
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506352009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004113000443</cupid><sourcerecordid>3169837331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d45b650e85fad8f292336ba0d8e5ed34d2425976874cb638d412808a564e28fe3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFb_AG8BL16is5_ZXAQprQoFD-o5bLKzJSVf7iaK_71b2oMont5hfm_mzSPkksINBZrdvgAHCSAo5RBF8CMyo0LlqQYljslsN05381NyFsI2MjynMCN3y3qD3YdpJkwwjHVrRgyJ630SprI1Xe36xoakd8mn8QPaZPC9naoxCYOpMJyTE2eagBcHnZO31fJ18Ziunx-eFvfrtOI5H1MrZKkkoJbOWO1YzjhXpQGrUaLlwjLBZJ4pnYmqVFxbQZkGbaQSyLRDPifX-73x_PsUgxZtHSpsGtNhP4WCSlBcMoA8ole_0G0_-S6mK6jIGMSCFI0U3VOV70Pw6IrBx-f9V0Gh2DVa_Gk0evjBY9rS13aDP1b_6_oGRUZ1zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1472013061</pqid></control><display><type>article</type><title>Eigenvalue estimates for submanifolds of warped product spaces</title><source>Cambridge University Press Journals Complete</source><creator>BESSA, G. P. ; GARCÍA–MARTÍNEZ, S. C. ; MARI, L. ; RAMIREZ–OSPINA, H. F.</creator><creatorcontrib>BESSA, G. P. ; GARCÍA–MARTÍNEZ, S. C. ; MARI, L. ; RAMIREZ–OSPINA, H. F.</creatorcontrib><description>In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn ×f Qq, where f ∈ C∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyperbolic spaces where most of these examples are not covered in the literature. Applications also include the study of the essential spectrum of hyperbolic graphs over compact regions of the boundary at infinity.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004113000443</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundaries ; Eigenvalues ; Geometry</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2014-01, Vol.156 (1), p.25-42</ispartof><rights>Copyright © Cambridge Philosophical Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d45b650e85fad8f292336ba0d8e5ed34d2425976874cb638d412808a564e28fe3</citedby><cites>FETCH-LOGICAL-c393t-d45b650e85fad8f292336ba0d8e5ed34d2425976874cb638d412808a564e28fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004113000443/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>BESSA, G. P.</creatorcontrib><creatorcontrib>GARCÍA–MARTÍNEZ, S. C.</creatorcontrib><creatorcontrib>MARI, L.</creatorcontrib><creatorcontrib>RAMIREZ–OSPINA, H. F.</creatorcontrib><title>Eigenvalue estimates for submanifolds of warped product spaces</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn ×f Qq, where f ∈ C∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyperbolic spaces where most of these examples are not covered in the literature. Applications also include the study of the essential spectrum of hyperbolic graphs over compact regions of the boundary at infinity.</description><subject>Boundaries</subject><subject>Eigenvalues</subject><subject>Geometry</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1Lw0AQxRdRsFb_AG8BL16is5_ZXAQprQoFD-o5bLKzJSVf7iaK_71b2oMont5hfm_mzSPkksINBZrdvgAHCSAo5RBF8CMyo0LlqQYljslsN05381NyFsI2MjynMCN3y3qD3YdpJkwwjHVrRgyJ630SprI1Xe36xoakd8mn8QPaZPC9naoxCYOpMJyTE2eagBcHnZO31fJ18Ziunx-eFvfrtOI5H1MrZKkkoJbOWO1YzjhXpQGrUaLlwjLBZJ4pnYmqVFxbQZkGbaQSyLRDPifX-73x_PsUgxZtHSpsGtNhP4WCSlBcMoA8ole_0G0_-S6mK6jIGMSCFI0U3VOV70Pw6IrBx-f9V0Gh2DVa_Gk0evjBY9rS13aDP1b_6_oGRUZ1zw</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>BESSA, G. P.</creator><creator>GARCÍA–MARTÍNEZ, S. C.</creator><creator>MARI, L.</creator><creator>RAMIREZ–OSPINA, H. F.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201401</creationdate><title>Eigenvalue estimates for submanifolds of warped product spaces</title><author>BESSA, G. P. ; GARCÍA–MARTÍNEZ, S. C. ; MARI, L. ; RAMIREZ–OSPINA, H. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d45b650e85fad8f292336ba0d8e5ed34d2425976874cb638d412808a564e28fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundaries</topic><topic>Eigenvalues</topic><topic>Geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BESSA, G. P.</creatorcontrib><creatorcontrib>GARCÍA–MARTÍNEZ, S. C.</creatorcontrib><creatorcontrib>MARI, L.</creatorcontrib><creatorcontrib>RAMIREZ–OSPINA, H. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BESSA, G. P.</au><au>GARCÍA–MARTÍNEZ, S. C.</au><au>MARI, L.</au><au>RAMIREZ–OSPINA, H. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue estimates for submanifolds of warped product spaces</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2014-01</date><risdate>2014</risdate><volume>156</volume><issue>1</issue><spage>25</spage><epage>42</epage><pages>25-42</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn ×f Qq, where f ∈ C∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyperbolic spaces where most of these examples are not covered in the literature. Applications also include the study of the essential spectrum of hyperbolic graphs over compact regions of the boundary at infinity.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004113000443</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 2014-01, Vol.156 (1), p.25-42
issn 0305-0041
1469-8064
language eng
recordid cdi_proquest_miscellaneous_1506352009
source Cambridge University Press Journals Complete
subjects Boundaries
Eigenvalues
Geometry
title Eigenvalue estimates for submanifolds of warped product spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20estimates%20for%20submanifolds%20of%20warped%20product%20spaces&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=BESSA,%20G.%20P.&rft.date=2014-01&rft.volume=156&rft.issue=1&rft.spage=25&rft.epage=42&rft.pages=25-42&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004113000443&rft_dat=%3Cproquest_cross%3E3169837331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1472013061&rft_id=info:pmid/&rft_cupid=10_1017_S0305004113000443&rfr_iscdi=true