Eigenvalue estimates for submanifolds of warped product spaces
In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn ×f Qq, where f ∈ C∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyper...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2014-01, Vol.156 (1), p.25-42 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | Mathematical proceedings of the Cambridge Philosophical Society |
container_volume | 156 |
creator | BESSA, G. P. GARCÍA–MARTÍNEZ, S. C. MARI, L. RAMIREZ–OSPINA, H. F. |
description | In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn ×f Qq, where f ∈ C∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyperbolic spaces where most of these examples are not covered in the literature. Applications also include the study of the essential spectrum of hyperbolic graphs over compact regions of the boundary at infinity. |
doi_str_mv | 10.1017/S0305004113000443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506352009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004113000443</cupid><sourcerecordid>3169837331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d45b650e85fad8f292336ba0d8e5ed34d2425976874cb638d412808a564e28fe3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFb_AG8BL16is5_ZXAQprQoFD-o5bLKzJSVf7iaK_71b2oMont5hfm_mzSPkksINBZrdvgAHCSAo5RBF8CMyo0LlqQYljslsN05381NyFsI2MjynMCN3y3qD3YdpJkwwjHVrRgyJ630SprI1Xe36xoakd8mn8QPaZPC9naoxCYOpMJyTE2eagBcHnZO31fJ18Ziunx-eFvfrtOI5H1MrZKkkoJbOWO1YzjhXpQGrUaLlwjLBZJ4pnYmqVFxbQZkGbaQSyLRDPifX-73x_PsUgxZtHSpsGtNhP4WCSlBcMoA8ole_0G0_-S6mK6jIGMSCFI0U3VOV70Pw6IrBx-f9V0Gh2DVa_Gk0evjBY9rS13aDP1b_6_oGRUZ1zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1472013061</pqid></control><display><type>article</type><title>Eigenvalue estimates for submanifolds of warped product spaces</title><source>Cambridge University Press Journals Complete</source><creator>BESSA, G. P. ; GARCÍA–MARTÍNEZ, S. C. ; MARI, L. ; RAMIREZ–OSPINA, H. F.</creator><creatorcontrib>BESSA, G. P. ; GARCÍA–MARTÍNEZ, S. C. ; MARI, L. ; RAMIREZ–OSPINA, H. F.</creatorcontrib><description>In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn ×f Qq, where f ∈ C∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyperbolic spaces where most of these examples are not covered in the literature. Applications also include the study of the essential spectrum of hyperbolic graphs over compact regions of the boundary at infinity.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004113000443</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundaries ; Eigenvalues ; Geometry</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2014-01, Vol.156 (1), p.25-42</ispartof><rights>Copyright © Cambridge Philosophical Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d45b650e85fad8f292336ba0d8e5ed34d2425976874cb638d412808a564e28fe3</citedby><cites>FETCH-LOGICAL-c393t-d45b650e85fad8f292336ba0d8e5ed34d2425976874cb638d412808a564e28fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004113000443/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>BESSA, G. P.</creatorcontrib><creatorcontrib>GARCÍA–MARTÍNEZ, S. C.</creatorcontrib><creatorcontrib>MARI, L.</creatorcontrib><creatorcontrib>RAMIREZ–OSPINA, H. F.</creatorcontrib><title>Eigenvalue estimates for submanifolds of warped product spaces</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn ×f Qq, where f ∈ C∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyperbolic spaces where most of these examples are not covered in the literature. Applications also include the study of the essential spectrum of hyperbolic graphs over compact regions of the boundary at infinity.</description><subject>Boundaries</subject><subject>Eigenvalues</subject><subject>Geometry</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1Lw0AQxRdRsFb_AG8BL16is5_ZXAQprQoFD-o5bLKzJSVf7iaK_71b2oMont5hfm_mzSPkksINBZrdvgAHCSAo5RBF8CMyo0LlqQYljslsN05381NyFsI2MjynMCN3y3qD3YdpJkwwjHVrRgyJ630SprI1Xe36xoakd8mn8QPaZPC9naoxCYOpMJyTE2eagBcHnZO31fJ18Ziunx-eFvfrtOI5H1MrZKkkoJbOWO1YzjhXpQGrUaLlwjLBZJ4pnYmqVFxbQZkGbaQSyLRDPifX-73x_PsUgxZtHSpsGtNhP4WCSlBcMoA8ole_0G0_-S6mK6jIGMSCFI0U3VOV70Pw6IrBx-f9V0Gh2DVa_Gk0evjBY9rS13aDP1b_6_oGRUZ1zw</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>BESSA, G. P.</creator><creator>GARCÍA–MARTÍNEZ, S. C.</creator><creator>MARI, L.</creator><creator>RAMIREZ–OSPINA, H. F.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201401</creationdate><title>Eigenvalue estimates for submanifolds of warped product spaces</title><author>BESSA, G. P. ; GARCÍA–MARTÍNEZ, S. C. ; MARI, L. ; RAMIREZ–OSPINA, H. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d45b650e85fad8f292336ba0d8e5ed34d2425976874cb638d412808a564e28fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundaries</topic><topic>Eigenvalues</topic><topic>Geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BESSA, G. P.</creatorcontrib><creatorcontrib>GARCÍA–MARTÍNEZ, S. C.</creatorcontrib><creatorcontrib>MARI, L.</creatorcontrib><creatorcontrib>RAMIREZ–OSPINA, H. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BESSA, G. P.</au><au>GARCÍA–MARTÍNEZ, S. C.</au><au>MARI, L.</au><au>RAMIREZ–OSPINA, H. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue estimates for submanifolds of warped product spaces</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2014-01</date><risdate>2014</risdate><volume>156</volume><issue>1</issue><spage>25</spage><epage>42</epage><pages>25-42</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>In this paper, we give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type Nn ×f Qq, where f ∈ C∞(N). This setting allows us to deal, among other things, with minimal submanifolds bounded by cylinders, cones, spheres and pseudo-hyperbolic spaces where most of these examples are not covered in the literature. Applications also include the study of the essential spectrum of hyperbolic graphs over compact regions of the boundary at infinity.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004113000443</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0041 |
ispartof | Mathematical proceedings of the Cambridge Philosophical Society, 2014-01, Vol.156 (1), p.25-42 |
issn | 0305-0041 1469-8064 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506352009 |
source | Cambridge University Press Journals Complete |
subjects | Boundaries Eigenvalues Geometry |
title | Eigenvalue estimates for submanifolds of warped product spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20estimates%20for%20submanifolds%20of%20warped%20product%20spaces&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=BESSA,%20G.%20P.&rft.date=2014-01&rft.volume=156&rft.issue=1&rft.spage=25&rft.epage=42&rft.pages=25-42&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004113000443&rft_dat=%3Cproquest_cross%3E3169837331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1472013061&rft_id=info:pmid/&rft_cupid=10_1017_S0305004113000443&rfr_iscdi=true |