Seasonal FIEGARCH processes

Here we develop the theory of seasonal FIEGARCH processes, denoted by SFIEGARCH, establishing conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We analyze their asymptotic dependence structure by means of the autocovariance and autocorrelation f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2013-12, Vol.68, p.262-295
Hauptverfasser: Lopes, Sílvia R.C., Prass, Taiane S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue
container_start_page 262
container_title Computational statistics & data analysis
container_volume 68
creator Lopes, Sílvia R.C.
Prass, Taiane S.
description Here we develop the theory of seasonal FIEGARCH processes, denoted by SFIEGARCH, establishing conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We analyze their asymptotic dependence structure by means of the autocovariance and autocorrelation functions. We also present some properties regarding their spectral representation. All properties are illustrated through graphical examples and an application of SFIEGARCH models to describe the volatility of the S&P500 US stock index log-return time series in the period from December 13, 2004 to October 10, 2009 is provided.
doi_str_mv 10.1016/j.csda.2013.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506348613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947313002466</els_id><sourcerecordid>1506348613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-2f1540644a2a37818ad11c7509f8693b6f3b5e2a4e61ebada6616c74ebb8264d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKt_QC89etl1JskmKXgppV9QEPw4h2x2FrZsuzXTCv57t7RnT3N5b4Z5Qjwi5AhoXjZ55CrkElDlYHMAvBIDdFZmVhXyWgx6yGZjbdWtuGPeAIDU1g3E0wcF7nahHc1Xs8Xkfboc7VMXiZn4XtzUoWV6uMyh-JrPPqfLbP22WE0n6ywqpQ6ZrLHQYLQOMijr0IUKMdoCxrUzY1WaWpUFyaDJIJWhCsagiVZTWTppdKWG4vm8t7_8fSQ--G3Dkdo27Kg7sscCjNLOoOpReUZj6pgT1X6fmm1Ivx7Bn0r4jT-V8KcSHqzvS_TS61mi_omfhpLn2NAuUtUkigdfdc1_-h_dBGQN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506348613</pqid></control><display><type>article</type><title>Seasonal FIEGARCH processes</title><source>Elsevier ScienceDirect Journals</source><creator>Lopes, Sílvia R.C. ; Prass, Taiane S.</creator><creatorcontrib>Lopes, Sílvia R.C. ; Prass, Taiane S.</creatorcontrib><description>Here we develop the theory of seasonal FIEGARCH processes, denoted by SFIEGARCH, establishing conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We analyze their asymptotic dependence structure by means of the autocovariance and autocorrelation functions. We also present some properties regarding their spectral representation. All properties are illustrated through graphical examples and an application of SFIEGARCH models to describe the volatility of the S&amp;P500 US stock index log-return time series in the period from December 13, 2004 to October 10, 2009 is provided.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2013.07.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; FIEGARCH process ; Long-range dependence ; Periodicity ; Volatility</subject><ispartof>Computational statistics &amp; data analysis, 2013-12, Vol.68, p.262-295</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-2f1540644a2a37818ad11c7509f8693b6f3b5e2a4e61ebada6616c74ebb8264d3</citedby><cites>FETCH-LOGICAL-c333t-2f1540644a2a37818ad11c7509f8693b6f3b5e2a4e61ebada6616c74ebb8264d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947313002466$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lopes, Sílvia R.C.</creatorcontrib><creatorcontrib>Prass, Taiane S.</creatorcontrib><title>Seasonal FIEGARCH processes</title><title>Computational statistics &amp; data analysis</title><description>Here we develop the theory of seasonal FIEGARCH processes, denoted by SFIEGARCH, establishing conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We analyze their asymptotic dependence structure by means of the autocovariance and autocorrelation functions. We also present some properties regarding their spectral representation. All properties are illustrated through graphical examples and an application of SFIEGARCH models to describe the volatility of the S&amp;P500 US stock index log-return time series in the period from December 13, 2004 to October 10, 2009 is provided.</description><subject>Asymptotic properties</subject><subject>FIEGARCH process</subject><subject>Long-range dependence</subject><subject>Periodicity</subject><subject>Volatility</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKt_QC89etl1JskmKXgppV9QEPw4h2x2FrZsuzXTCv57t7RnT3N5b4Z5Qjwi5AhoXjZ55CrkElDlYHMAvBIDdFZmVhXyWgx6yGZjbdWtuGPeAIDU1g3E0wcF7nahHc1Xs8Xkfboc7VMXiZn4XtzUoWV6uMyh-JrPPqfLbP22WE0n6ywqpQ6ZrLHQYLQOMijr0IUKMdoCxrUzY1WaWpUFyaDJIJWhCsagiVZTWTppdKWG4vm8t7_8fSQ--G3Dkdo27Kg7sscCjNLOoOpReUZj6pgT1X6fmm1Ivx7Bn0r4jT-V8KcSHqzvS_TS61mi_omfhpLn2NAuUtUkigdfdc1_-h_dBGQN</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Lopes, Sílvia R.C.</creator><creator>Prass, Taiane S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Seasonal FIEGARCH processes</title><author>Lopes, Sílvia R.C. ; Prass, Taiane S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-2f1540644a2a37818ad11c7509f8693b6f3b5e2a4e61ebada6616c74ebb8264d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>FIEGARCH process</topic><topic>Long-range dependence</topic><topic>Periodicity</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, Sílvia R.C.</creatorcontrib><creatorcontrib>Prass, Taiane S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, Sílvia R.C.</au><au>Prass, Taiane S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal FIEGARCH processes</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>68</volume><spage>262</spage><epage>295</epage><pages>262-295</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Here we develop the theory of seasonal FIEGARCH processes, denoted by SFIEGARCH, establishing conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We analyze their asymptotic dependence structure by means of the autocovariance and autocorrelation functions. We also present some properties regarding their spectral representation. All properties are illustrated through graphical examples and an application of SFIEGARCH models to describe the volatility of the S&amp;P500 US stock index log-return time series in the period from December 13, 2004 to October 10, 2009 is provided.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2013.07.001</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2013-12, Vol.68, p.262-295
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_1506348613
source Elsevier ScienceDirect Journals
subjects Asymptotic properties
FIEGARCH process
Long-range dependence
Periodicity
Volatility
title Seasonal FIEGARCH processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20FIEGARCH%20processes&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Lopes,%20S%C3%ADlvia%20R.C.&rft.date=2013-12-01&rft.volume=68&rft.spage=262&rft.epage=295&rft.pages=262-295&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2013.07.001&rft_dat=%3Cproquest_cross%3E1506348613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506348613&rft_id=info:pmid/&rft_els_id=S0167947313002466&rfr_iscdi=true