Seasonal FIEGARCH processes
Here we develop the theory of seasonal FIEGARCH processes, denoted by SFIEGARCH, establishing conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We analyze their asymptotic dependence structure by means of the autocovariance and autocorrelation f...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2013-12, Vol.68, p.262-295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | |
container_start_page | 262 |
container_title | Computational statistics & data analysis |
container_volume | 68 |
creator | Lopes, Sílvia R.C. Prass, Taiane S. |
description | Here we develop the theory of seasonal FIEGARCH processes, denoted by SFIEGARCH, establishing conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We analyze their asymptotic dependence structure by means of the autocovariance and autocorrelation functions. We also present some properties regarding their spectral representation. All properties are illustrated through graphical examples and an application of SFIEGARCH models to describe the volatility of the S&P500 US stock index log-return time series in the period from December 13, 2004 to October 10, 2009 is provided. |
doi_str_mv | 10.1016/j.csda.2013.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506348613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947313002466</els_id><sourcerecordid>1506348613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-2f1540644a2a37818ad11c7509f8693b6f3b5e2a4e61ebada6616c74ebb8264d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKt_QC89etl1JskmKXgppV9QEPw4h2x2FrZsuzXTCv57t7RnT3N5b4Z5Qjwi5AhoXjZ55CrkElDlYHMAvBIDdFZmVhXyWgx6yGZjbdWtuGPeAIDU1g3E0wcF7nahHc1Xs8Xkfboc7VMXiZn4XtzUoWV6uMyh-JrPPqfLbP22WE0n6ywqpQ6ZrLHQYLQOMijr0IUKMdoCxrUzY1WaWpUFyaDJIJWhCsagiVZTWTppdKWG4vm8t7_8fSQ--G3Dkdo27Kg7sscCjNLOoOpReUZj6pgT1X6fmm1Ivx7Bn0r4jT-V8KcSHqzvS_TS61mi_omfhpLn2NAuUtUkigdfdc1_-h_dBGQN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506348613</pqid></control><display><type>article</type><title>Seasonal FIEGARCH processes</title><source>Elsevier ScienceDirect Journals</source><creator>Lopes, Sílvia R.C. ; Prass, Taiane S.</creator><creatorcontrib>Lopes, Sílvia R.C. ; Prass, Taiane S.</creatorcontrib><description>Here we develop the theory of seasonal FIEGARCH processes, denoted by SFIEGARCH, establishing conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We analyze their asymptotic dependence structure by means of the autocovariance and autocorrelation functions. We also present some properties regarding their spectral representation. All properties are illustrated through graphical examples and an application of SFIEGARCH models to describe the volatility of the S&P500 US stock index log-return time series in the period from December 13, 2004 to October 10, 2009 is provided.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2013.07.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; FIEGARCH process ; Long-range dependence ; Periodicity ; Volatility</subject><ispartof>Computational statistics & data analysis, 2013-12, Vol.68, p.262-295</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-2f1540644a2a37818ad11c7509f8693b6f3b5e2a4e61ebada6616c74ebb8264d3</citedby><cites>FETCH-LOGICAL-c333t-2f1540644a2a37818ad11c7509f8693b6f3b5e2a4e61ebada6616c74ebb8264d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947313002466$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lopes, Sílvia R.C.</creatorcontrib><creatorcontrib>Prass, Taiane S.</creatorcontrib><title>Seasonal FIEGARCH processes</title><title>Computational statistics & data analysis</title><description>Here we develop the theory of seasonal FIEGARCH processes, denoted by SFIEGARCH, establishing conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We analyze their asymptotic dependence structure by means of the autocovariance and autocorrelation functions. We also present some properties regarding their spectral representation. All properties are illustrated through graphical examples and an application of SFIEGARCH models to describe the volatility of the S&P500 US stock index log-return time series in the period from December 13, 2004 to October 10, 2009 is provided.</description><subject>Asymptotic properties</subject><subject>FIEGARCH process</subject><subject>Long-range dependence</subject><subject>Periodicity</subject><subject>Volatility</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKt_QC89etl1JskmKXgppV9QEPw4h2x2FrZsuzXTCv57t7RnT3N5b4Z5Qjwi5AhoXjZ55CrkElDlYHMAvBIDdFZmVhXyWgx6yGZjbdWtuGPeAIDU1g3E0wcF7nahHc1Xs8Xkfboc7VMXiZn4XtzUoWV6uMyh-JrPPqfLbP22WE0n6ywqpQ6ZrLHQYLQOMijr0IUKMdoCxrUzY1WaWpUFyaDJIJWhCsagiVZTWTppdKWG4vm8t7_8fSQ--G3Dkdo27Kg7sscCjNLOoOpReUZj6pgT1X6fmm1Ivx7Bn0r4jT-V8KcSHqzvS_TS61mi_omfhpLn2NAuUtUkigdfdc1_-h_dBGQN</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Lopes, Sílvia R.C.</creator><creator>Prass, Taiane S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Seasonal FIEGARCH processes</title><author>Lopes, Sílvia R.C. ; Prass, Taiane S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-2f1540644a2a37818ad11c7509f8693b6f3b5e2a4e61ebada6616c74ebb8264d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>FIEGARCH process</topic><topic>Long-range dependence</topic><topic>Periodicity</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, Sílvia R.C.</creatorcontrib><creatorcontrib>Prass, Taiane S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, Sílvia R.C.</au><au>Prass, Taiane S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal FIEGARCH processes</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>68</volume><spage>262</spage><epage>295</epage><pages>262-295</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Here we develop the theory of seasonal FIEGARCH processes, denoted by SFIEGARCH, establishing conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We analyze their asymptotic dependence structure by means of the autocovariance and autocorrelation functions. We also present some properties regarding their spectral representation. All properties are illustrated through graphical examples and an application of SFIEGARCH models to describe the volatility of the S&P500 US stock index log-return time series in the period from December 13, 2004 to October 10, 2009 is provided.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2013.07.001</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2013-12, Vol.68, p.262-295 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506348613 |
source | Elsevier ScienceDirect Journals |
subjects | Asymptotic properties FIEGARCH process Long-range dependence Periodicity Volatility |
title | Seasonal FIEGARCH processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20FIEGARCH%20processes&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Lopes,%20S%C3%ADlvia%20R.C.&rft.date=2013-12-01&rft.volume=68&rft.spage=262&rft.epage=295&rft.pages=262-295&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2013.07.001&rft_dat=%3Cproquest_cross%3E1506348613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506348613&rft_id=info:pmid/&rft_els_id=S0167947313002466&rfr_iscdi=true |