Prediction of quality parameters of biomass pellets from proximate and ultimate analysis

•Key biomass pellet indices were predicted from proximate and ultimate analysis.•Higher heating value was predicted with an R2 of 0.99 and SEy of 0.08MJkg−1.•Mechanical durability was predicted with an R2 of 0.94 and SEy of 0.49%.•Important quality indices for a diverse range of biomass pellets were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2013-09, Vol.111, p.771-777
Hauptverfasser: Gillespie, Gary D., Everard, Colm D., Fagan, Colette C., McDonnell, Kevin P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue
container_start_page 771
container_title Fuel (Guildford)
container_volume 111
creator Gillespie, Gary D.
Everard, Colm D.
Fagan, Colette C.
McDonnell, Kevin P.
description •Key biomass pellet indices were predicted from proximate and ultimate analysis.•Higher heating value was predicted with an R2 of 0.99 and SEy of 0.08MJkg−1.•Mechanical durability was predicted with an R2 of 0.94 and SEy of 0.49%.•Important quality indices for a diverse range of biomass pellets were reported. The real-time prediction of crucial biomass pellet quality parameters such as higher heating value (HHV) and mechanical durability (MD) will allow for more efficient operation of energy production systems. Multiple linear regression (MLR) models were developed to predict HHV and MD from proximate and ultimate analysis of biomass pellets. A diverse range of biomasses from energy crops including pine, Miscanthus, reed canary grass, tall fescue and short rotation coppice willow were used to produce the pellets. HHV and MD of the pellets were predicted with coefficients of determination of 0.99 and 0.94, respectively, and standard errors of the estimate of 0.08MJkg−1 (Range: 16.39–18.92MJkg−1) and 0.49% (Range: 92.6–97.5%), respectively. This study demonstrates that MLR can be used to predict additional information of HHV and MD of biomass pellets from proximate and ultimate analysis. Important quality indices for diverse biomass pellets are also reported.
doi_str_mv 10.1016/j.fuel.2013.05.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505348793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001623611300402X</els_id><sourcerecordid>1505348793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-676957b42d3a437a39aa55b72bb4681386ca28b6abba5a4cbbe1d6b8613c17883</originalsourceid><addsrcrecordid>eNqFkTtrHDEQgIWJwRfbf8DVNoY0u9FbOkgTjO0EDEmRgDsx0mpBxz7OGm3w_fvoOCdlUokR37y-IeSG0Y5Rpj_uumGNY8cpEx1VHaX8jGyYNaI1TIl3ZEMr1XKh2QV5j7ijlBqr5IY8f8-xT6GkZW6WoXlZYUzl0OwhwxRLzHj89WmZALHZx3GMBZshL1Ozz8trmqDEBua-WcfyJ4DxgAmvyPkAI8brt_eS_Hy4_3H3pX369vj17vNTG6QQpdVGb5XxkvcCpDAgtgBKecO9l9oyYXUAbr0G70GBDN5H1mtvNROBGWvFJflwqlvneVkjFjclDHVQmOOyomOKKiGt2Yr_o1JLZRmjtKL8hIa8IOY4uH2u--WDY9QdjbudOxp3R-OOKleN16Tbt_qAAcYhwxwS_s3kRlHOuKncpxMXq5dfKWaHIcU51EPkGIrrl_SvNr8BjYSXRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464581100</pqid></control><display><type>article</type><title>Prediction of quality parameters of biomass pellets from proximate and ultimate analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Gillespie, Gary D. ; Everard, Colm D. ; Fagan, Colette C. ; McDonnell, Kevin P.</creator><creatorcontrib>Gillespie, Gary D. ; Everard, Colm D. ; Fagan, Colette C. ; McDonnell, Kevin P.</creatorcontrib><description>•Key biomass pellet indices were predicted from proximate and ultimate analysis.•Higher heating value was predicted with an R2 of 0.99 and SEy of 0.08MJkg−1.•Mechanical durability was predicted with an R2 of 0.94 and SEy of 0.49%.•Important quality indices for a diverse range of biomass pellets were reported. The real-time prediction of crucial biomass pellet quality parameters such as higher heating value (HHV) and mechanical durability (MD) will allow for more efficient operation of energy production systems. Multiple linear regression (MLR) models were developed to predict HHV and MD from proximate and ultimate analysis of biomass pellets. A diverse range of biomasses from energy crops including pine, Miscanthus, reed canary grass, tall fescue and short rotation coppice willow were used to produce the pellets. HHV and MD of the pellets were predicted with coefficients of determination of 0.99 and 0.94, respectively, and standard errors of the estimate of 0.08MJkg−1 (Range: 16.39–18.92MJkg−1) and 0.49% (Range: 92.6–97.5%), respectively. This study demonstrates that MLR can be used to predict additional information of HHV and MD of biomass pellets from proximate and ultimate analysis. Important quality indices for diverse biomass pellets are also reported.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2013.05.002</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Biomass ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fuels ; Higher heating value ; Mechanical durability ; Miscanthus ; Natural energy ; Proximate analysis ; Ultimate analysis</subject><ispartof>Fuel (Guildford), 2013-09, Vol.111, p.771-777</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-676957b42d3a437a39aa55b72bb4681386ca28b6abba5a4cbbe1d6b8613c17883</citedby><cites>FETCH-LOGICAL-c433t-676957b42d3a437a39aa55b72bb4681386ca28b6abba5a4cbbe1d6b8613c17883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001623611300402X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27502127$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gillespie, Gary D.</creatorcontrib><creatorcontrib>Everard, Colm D.</creatorcontrib><creatorcontrib>Fagan, Colette C.</creatorcontrib><creatorcontrib>McDonnell, Kevin P.</creatorcontrib><title>Prediction of quality parameters of biomass pellets from proximate and ultimate analysis</title><title>Fuel (Guildford)</title><description>•Key biomass pellet indices were predicted from proximate and ultimate analysis.•Higher heating value was predicted with an R2 of 0.99 and SEy of 0.08MJkg−1.•Mechanical durability was predicted with an R2 of 0.94 and SEy of 0.49%.•Important quality indices for a diverse range of biomass pellets were reported. The real-time prediction of crucial biomass pellet quality parameters such as higher heating value (HHV) and mechanical durability (MD) will allow for more efficient operation of energy production systems. Multiple linear regression (MLR) models were developed to predict HHV and MD from proximate and ultimate analysis of biomass pellets. A diverse range of biomasses from energy crops including pine, Miscanthus, reed canary grass, tall fescue and short rotation coppice willow were used to produce the pellets. HHV and MD of the pellets were predicted with coefficients of determination of 0.99 and 0.94, respectively, and standard errors of the estimate of 0.08MJkg−1 (Range: 16.39–18.92MJkg−1) and 0.49% (Range: 92.6–97.5%), respectively. This study demonstrates that MLR can be used to predict additional information of HHV and MD of biomass pellets from proximate and ultimate analysis. Important quality indices for diverse biomass pellets are also reported.</description><subject>Applied sciences</subject><subject>Biomass</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Higher heating value</subject><subject>Mechanical durability</subject><subject>Miscanthus</subject><subject>Natural energy</subject><subject>Proximate analysis</subject><subject>Ultimate analysis</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkTtrHDEQgIWJwRfbf8DVNoY0u9FbOkgTjO0EDEmRgDsx0mpBxz7OGm3w_fvoOCdlUokR37y-IeSG0Y5Rpj_uumGNY8cpEx1VHaX8jGyYNaI1TIl3ZEMr1XKh2QV5j7ijlBqr5IY8f8-xT6GkZW6WoXlZYUzl0OwhwxRLzHj89WmZALHZx3GMBZshL1Ozz8trmqDEBua-WcfyJ4DxgAmvyPkAI8brt_eS_Hy4_3H3pX369vj17vNTG6QQpdVGb5XxkvcCpDAgtgBKecO9l9oyYXUAbr0G70GBDN5H1mtvNROBGWvFJflwqlvneVkjFjclDHVQmOOyomOKKiGt2Yr_o1JLZRmjtKL8hIa8IOY4uH2u--WDY9QdjbudOxp3R-OOKleN16Tbt_qAAcYhwxwS_s3kRlHOuKncpxMXq5dfKWaHIcU51EPkGIrrl_SvNr8BjYSXRw</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Gillespie, Gary D.</creator><creator>Everard, Colm D.</creator><creator>Fagan, Colette C.</creator><creator>McDonnell, Kevin P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130901</creationdate><title>Prediction of quality parameters of biomass pellets from proximate and ultimate analysis</title><author>Gillespie, Gary D. ; Everard, Colm D. ; Fagan, Colette C. ; McDonnell, Kevin P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-676957b42d3a437a39aa55b72bb4681386ca28b6abba5a4cbbe1d6b8613c17883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biomass</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Higher heating value</topic><topic>Mechanical durability</topic><topic>Miscanthus</topic><topic>Natural energy</topic><topic>Proximate analysis</topic><topic>Ultimate analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillespie, Gary D.</creatorcontrib><creatorcontrib>Everard, Colm D.</creatorcontrib><creatorcontrib>Fagan, Colette C.</creatorcontrib><creatorcontrib>McDonnell, Kevin P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillespie, Gary D.</au><au>Everard, Colm D.</au><au>Fagan, Colette C.</au><au>McDonnell, Kevin P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of quality parameters of biomass pellets from proximate and ultimate analysis</atitle><jtitle>Fuel (Guildford)</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>111</volume><spage>771</spage><epage>777</epage><pages>771-777</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Key biomass pellet indices were predicted from proximate and ultimate analysis.•Higher heating value was predicted with an R2 of 0.99 and SEy of 0.08MJkg−1.•Mechanical durability was predicted with an R2 of 0.94 and SEy of 0.49%.•Important quality indices for a diverse range of biomass pellets were reported. The real-time prediction of crucial biomass pellet quality parameters such as higher heating value (HHV) and mechanical durability (MD) will allow for more efficient operation of energy production systems. Multiple linear regression (MLR) models were developed to predict HHV and MD from proximate and ultimate analysis of biomass pellets. A diverse range of biomasses from energy crops including pine, Miscanthus, reed canary grass, tall fescue and short rotation coppice willow were used to produce the pellets. HHV and MD of the pellets were predicted with coefficients of determination of 0.99 and 0.94, respectively, and standard errors of the estimate of 0.08MJkg−1 (Range: 16.39–18.92MJkg−1) and 0.49% (Range: 92.6–97.5%), respectively. This study demonstrates that MLR can be used to predict additional information of HHV and MD of biomass pellets from proximate and ultimate analysis. Important quality indices for diverse biomass pellets are also reported.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2013.05.002</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2013-09, Vol.111, p.771-777
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_miscellaneous_1505348793
source Elsevier ScienceDirect Journals
subjects Applied sciences
Biomass
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fuels
Higher heating value
Mechanical durability
Miscanthus
Natural energy
Proximate analysis
Ultimate analysis
title Prediction of quality parameters of biomass pellets from proximate and ultimate analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20quality%20parameters%20of%20biomass%20pellets%20from%20proximate%20and%20ultimate%20analysis&rft.jtitle=Fuel%20(Guildford)&rft.au=Gillespie,%20Gary%20D.&rft.date=2013-09-01&rft.volume=111&rft.spage=771&rft.epage=777&rft.pages=771-777&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2013.05.002&rft_dat=%3Cproquest_cross%3E1505348793%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464581100&rft_id=info:pmid/&rft_els_id=S001623611300402X&rfr_iscdi=true