A highly resolved modeling technique to simulate residential power demand
► Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data. ► The residential demand model allows reconstructing power consumption of a single or an aggregate group of households. ► A rigorous statistical validation framework has been developed...
Gespeichert in:
Veröffentlicht in: | Applied energy 2013-07, Vol.107, p.465-473 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 473 |
---|---|
container_issue | |
container_start_page | 465 |
container_title | Applied energy |
container_volume | 107 |
creator | Muratori, Matteo Roberts, Matthew C. Sioshansi, Ramteen Marano, Vincenzo Rizzoni, Giorgio |
description | ► Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data. ► The residential demand model allows reconstructing power consumption of a single or an aggregate group of households. ► A rigorous statistical validation framework has been developed to validate the proposed model. ► The residential demand model can serve as a tool to evaluate the effects of different technologies. ► The simulated residential demand loads show highly realistic patterns.
This paper presents a model to simulate the electricity demand of a single household consisting of multiple individuals. The total consumption is divided into four main categories, namely cold appliances, heating, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities. The first three components are modeled using engineering physically-based models, while the activity patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation of the predicted electricity demand against metered data is provided. The results show highly realistic patterns that capture annual and diurnal variations, load fluctuations, and diversity between household configuration, location, and size. |
doi_str_mv | 10.1016/j.apenergy.2013.02.057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505347084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030626191300175X</els_id><sourcerecordid>1505347084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-721d34776388b47c153848b44642e1af3d3003ed6bcafb1d4f2f5985d4decb4a3</originalsourceid><addsrcrecordid>eNqFkD1v2zAQhomgAeI6-QuJlgJdpB4_RElbg6BJDRjokHgmaPJk06BEh5QT-N-XhtOume6G57338BByS6GiQOWPXaX3OGLcHCsGlFfAKqibCzKjbcPKjtL2C5kBB1kySbsr8jWlHQAwymBGFvfF1m22_lhETMG_oS2GYNG7cVNMaLajez1gMYUiueHg9YQnzlkcJ6d9sQ_vGAuLgx7tNbnstU948zHnZPX46-Xhd7n887R4uF-WhnfdVDaMWi6aRvK2XYvG0Jq3Im9CCoZU99xyAI5Wro3u19SKnvV119ZWWDRrofmcfD_f3ceQf0uTGlwy6L0eMRySojXUuQBakVF5Rk0MKUXs1T66QcejoqBO7tRO_XOnTu4UMJXd5eC3jw6djPZ91KNx6X-aNRwaxk8Fd2eu10HpTczM6jkfktkvlZxBJn6eCcxK3hxGlYzD0aB1Ec2kbHCfPfMX-i2Rug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505347084</pqid></control><display><type>article</type><title>A highly resolved modeling technique to simulate residential power demand</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Muratori, Matteo ; Roberts, Matthew C. ; Sioshansi, Ramteen ; Marano, Vincenzo ; Rizzoni, Giorgio</creator><creatorcontrib>Muratori, Matteo ; Roberts, Matthew C. ; Sioshansi, Ramteen ; Marano, Vincenzo ; Rizzoni, Giorgio</creatorcontrib><description>► Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data. ► The residential demand model allows reconstructing power consumption of a single or an aggregate group of households. ► A rigorous statistical validation framework has been developed to validate the proposed model. ► The residential demand model can serve as a tool to evaluate the effects of different technologies. ► The simulated residential demand loads show highly realistic patterns.
This paper presents a model to simulate the electricity demand of a single household consisting of multiple individuals. The total consumption is divided into four main categories, namely cold appliances, heating, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities. The first three components are modeled using engineering physically-based models, while the activity patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation of the predicted electricity demand against metered data is provided. The results show highly realistic patterns that capture annual and diurnal variations, load fluctuations, and diversity between household configuration, location, and size.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2013.02.057</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>air conditioning ; Air conditioning. Ventilation ; Applied sciences ; case studies ; cold ; diurnal variation ; electricity ; Energy ; Energy demand modeling ; energy use and consumption ; Energy. Thermal use of fuels ; engineering ; Exact sciences and technology ; heat ; Heating, air conditioning and ventilation ; Heterogeneous Markov chain ; Household power demand ; HVAC modeling ; Markov chain ; Occupant behavior ; Residential electricity use ; simulation models ; Techniques, equipment. Control. Metering</subject><ispartof>Applied energy, 2013-07, Vol.107, p.465-473</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-721d34776388b47c153848b44642e1af3d3003ed6bcafb1d4f2f5985d4decb4a3</citedby><cites>FETCH-LOGICAL-c399t-721d34776388b47c153848b44642e1af3d3003ed6bcafb1d4f2f5985d4decb4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apenergy.2013.02.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27307234$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Muratori, Matteo</creatorcontrib><creatorcontrib>Roberts, Matthew C.</creatorcontrib><creatorcontrib>Sioshansi, Ramteen</creatorcontrib><creatorcontrib>Marano, Vincenzo</creatorcontrib><creatorcontrib>Rizzoni, Giorgio</creatorcontrib><title>A highly resolved modeling technique to simulate residential power demand</title><title>Applied energy</title><description>► Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data. ► The residential demand model allows reconstructing power consumption of a single or an aggregate group of households. ► A rigorous statistical validation framework has been developed to validate the proposed model. ► The residential demand model can serve as a tool to evaluate the effects of different technologies. ► The simulated residential demand loads show highly realistic patterns.
This paper presents a model to simulate the electricity demand of a single household consisting of multiple individuals. The total consumption is divided into four main categories, namely cold appliances, heating, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities. The first three components are modeled using engineering physically-based models, while the activity patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation of the predicted electricity demand against metered data is provided. The results show highly realistic patterns that capture annual and diurnal variations, load fluctuations, and diversity between household configuration, location, and size.</description><subject>air conditioning</subject><subject>Air conditioning. Ventilation</subject><subject>Applied sciences</subject><subject>case studies</subject><subject>cold</subject><subject>diurnal variation</subject><subject>electricity</subject><subject>Energy</subject><subject>Energy demand modeling</subject><subject>energy use and consumption</subject><subject>Energy. Thermal use of fuels</subject><subject>engineering</subject><subject>Exact sciences and technology</subject><subject>heat</subject><subject>Heating, air conditioning and ventilation</subject><subject>Heterogeneous Markov chain</subject><subject>Household power demand</subject><subject>HVAC modeling</subject><subject>Markov chain</subject><subject>Occupant behavior</subject><subject>Residential electricity use</subject><subject>simulation models</subject><subject>Techniques, equipment. Control. Metering</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1v2zAQhomgAeI6-QuJlgJdpB4_RElbg6BJDRjokHgmaPJk06BEh5QT-N-XhtOume6G57338BByS6GiQOWPXaX3OGLcHCsGlFfAKqibCzKjbcPKjtL2C5kBB1kySbsr8jWlHQAwymBGFvfF1m22_lhETMG_oS2GYNG7cVNMaLajez1gMYUiueHg9YQnzlkcJ6d9sQ_vGAuLgx7tNbnstU948zHnZPX46-Xhd7n887R4uF-WhnfdVDaMWi6aRvK2XYvG0Jq3Im9CCoZU99xyAI5Wro3u19SKnvV119ZWWDRrofmcfD_f3ceQf0uTGlwy6L0eMRySojXUuQBakVF5Rk0MKUXs1T66QcejoqBO7tRO_XOnTu4UMJXd5eC3jw6djPZ91KNx6X-aNRwaxk8Fd2eu10HpTczM6jkfktkvlZxBJn6eCcxK3hxGlYzD0aB1Ec2kbHCfPfMX-i2Rug</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Muratori, Matteo</creator><creator>Roberts, Matthew C.</creator><creator>Sioshansi, Ramteen</creator><creator>Marano, Vincenzo</creator><creator>Rizzoni, Giorgio</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130701</creationdate><title>A highly resolved modeling technique to simulate residential power demand</title><author>Muratori, Matteo ; Roberts, Matthew C. ; Sioshansi, Ramteen ; Marano, Vincenzo ; Rizzoni, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-721d34776388b47c153848b44642e1af3d3003ed6bcafb1d4f2f5985d4decb4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>air conditioning</topic><topic>Air conditioning. Ventilation</topic><topic>Applied sciences</topic><topic>case studies</topic><topic>cold</topic><topic>diurnal variation</topic><topic>electricity</topic><topic>Energy</topic><topic>Energy demand modeling</topic><topic>energy use and consumption</topic><topic>Energy. Thermal use of fuels</topic><topic>engineering</topic><topic>Exact sciences and technology</topic><topic>heat</topic><topic>Heating, air conditioning and ventilation</topic><topic>Heterogeneous Markov chain</topic><topic>Household power demand</topic><topic>HVAC modeling</topic><topic>Markov chain</topic><topic>Occupant behavior</topic><topic>Residential electricity use</topic><topic>simulation models</topic><topic>Techniques, equipment. Control. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muratori, Matteo</creatorcontrib><creatorcontrib>Roberts, Matthew C.</creatorcontrib><creatorcontrib>Sioshansi, Ramteen</creatorcontrib><creatorcontrib>Marano, Vincenzo</creatorcontrib><creatorcontrib>Rizzoni, Giorgio</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muratori, Matteo</au><au>Roberts, Matthew C.</au><au>Sioshansi, Ramteen</au><au>Marano, Vincenzo</au><au>Rizzoni, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly resolved modeling technique to simulate residential power demand</atitle><jtitle>Applied energy</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>107</volume><spage>465</spage><epage>473</epage><pages>465-473</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>► Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data. ► The residential demand model allows reconstructing power consumption of a single or an aggregate group of households. ► A rigorous statistical validation framework has been developed to validate the proposed model. ► The residential demand model can serve as a tool to evaluate the effects of different technologies. ► The simulated residential demand loads show highly realistic patterns.
This paper presents a model to simulate the electricity demand of a single household consisting of multiple individuals. The total consumption is divided into four main categories, namely cold appliances, heating, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities. The first three components are modeled using engineering physically-based models, while the activity patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation of the predicted electricity demand against metered data is provided. The results show highly realistic patterns that capture annual and diurnal variations, load fluctuations, and diversity between household configuration, location, and size.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2013.02.057</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-2619 |
ispartof | Applied energy, 2013-07, Vol.107, p.465-473 |
issn | 0306-2619 1872-9118 |
language | eng |
recordid | cdi_proquest_miscellaneous_1505347084 |
source | Elsevier ScienceDirect Journals Complete |
subjects | air conditioning Air conditioning. Ventilation Applied sciences case studies cold diurnal variation electricity Energy Energy demand modeling energy use and consumption Energy. Thermal use of fuels engineering Exact sciences and technology heat Heating, air conditioning and ventilation Heterogeneous Markov chain Household power demand HVAC modeling Markov chain Occupant behavior Residential electricity use simulation models Techniques, equipment. Control. Metering |
title | A highly resolved modeling technique to simulate residential power demand |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20resolved%20modeling%20technique%20to%20simulate%20residential%20power%20demand&rft.jtitle=Applied%20energy&rft.au=Muratori,%20Matteo&rft.date=2013-07-01&rft.volume=107&rft.spage=465&rft.epage=473&rft.pages=465-473&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2013.02.057&rft_dat=%3Cproquest_cross%3E1505347084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505347084&rft_id=info:pmid/&rft_els_id=S030626191300175X&rfr_iscdi=true |