A highly resolved modeling technique to simulate residential power demand

► Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data. ► The residential demand model allows reconstructing power consumption of a single or an aggregate group of households. ► A rigorous statistical validation framework has been developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2013-07, Vol.107, p.465-473
Hauptverfasser: Muratori, Matteo, Roberts, Matthew C., Sioshansi, Ramteen, Marano, Vincenzo, Rizzoni, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 473
container_issue
container_start_page 465
container_title Applied energy
container_volume 107
creator Muratori, Matteo
Roberts, Matthew C.
Sioshansi, Ramteen
Marano, Vincenzo
Rizzoni, Giorgio
description ► Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data. ► The residential demand model allows reconstructing power consumption of a single or an aggregate group of households. ► A rigorous statistical validation framework has been developed to validate the proposed model. ► The residential demand model can serve as a tool to evaluate the effects of different technologies. ► The simulated residential demand loads show highly realistic patterns. This paper presents a model to simulate the electricity demand of a single household consisting of multiple individuals. The total consumption is divided into four main categories, namely cold appliances, heating, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities. The first three components are modeled using engineering physically-based models, while the activity patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation of the predicted electricity demand against metered data is provided. The results show highly realistic patterns that capture annual and diurnal variations, load fluctuations, and diversity between household configuration, location, and size.
doi_str_mv 10.1016/j.apenergy.2013.02.057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505347084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030626191300175X</els_id><sourcerecordid>1505347084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-721d34776388b47c153848b44642e1af3d3003ed6bcafb1d4f2f5985d4decb4a3</originalsourceid><addsrcrecordid>eNqFkD1v2zAQhomgAeI6-QuJlgJdpB4_RElbg6BJDRjokHgmaPJk06BEh5QT-N-XhtOume6G57338BByS6GiQOWPXaX3OGLcHCsGlFfAKqibCzKjbcPKjtL2C5kBB1kySbsr8jWlHQAwymBGFvfF1m22_lhETMG_oS2GYNG7cVNMaLajez1gMYUiueHg9YQnzlkcJ6d9sQ_vGAuLgx7tNbnstU948zHnZPX46-Xhd7n887R4uF-WhnfdVDaMWi6aRvK2XYvG0Jq3Im9CCoZU99xyAI5Wro3u19SKnvV119ZWWDRrofmcfD_f3ceQf0uTGlwy6L0eMRySojXUuQBakVF5Rk0MKUXs1T66QcejoqBO7tRO_XOnTu4UMJXd5eC3jw6djPZ91KNx6X-aNRwaxk8Fd2eu10HpTczM6jkfktkvlZxBJn6eCcxK3hxGlYzD0aB1Ec2kbHCfPfMX-i2Rug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505347084</pqid></control><display><type>article</type><title>A highly resolved modeling technique to simulate residential power demand</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Muratori, Matteo ; Roberts, Matthew C. ; Sioshansi, Ramteen ; Marano, Vincenzo ; Rizzoni, Giorgio</creator><creatorcontrib>Muratori, Matteo ; Roberts, Matthew C. ; Sioshansi, Ramteen ; Marano, Vincenzo ; Rizzoni, Giorgio</creatorcontrib><description>► Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data. ► The residential demand model allows reconstructing power consumption of a single or an aggregate group of households. ► A rigorous statistical validation framework has been developed to validate the proposed model. ► The residential demand model can serve as a tool to evaluate the effects of different technologies. ► The simulated residential demand loads show highly realistic patterns. This paper presents a model to simulate the electricity demand of a single household consisting of multiple individuals. The total consumption is divided into four main categories, namely cold appliances, heating, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities. The first three components are modeled using engineering physically-based models, while the activity patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation of the predicted electricity demand against metered data is provided. The results show highly realistic patterns that capture annual and diurnal variations, load fluctuations, and diversity between household configuration, location, and size.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2013.02.057</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>air conditioning ; Air conditioning. Ventilation ; Applied sciences ; case studies ; cold ; diurnal variation ; electricity ; Energy ; Energy demand modeling ; energy use and consumption ; Energy. Thermal use of fuels ; engineering ; Exact sciences and technology ; heat ; Heating, air conditioning and ventilation ; Heterogeneous Markov chain ; Household power demand ; HVAC modeling ; Markov chain ; Occupant behavior ; Residential electricity use ; simulation models ; Techniques, equipment. Control. Metering</subject><ispartof>Applied energy, 2013-07, Vol.107, p.465-473</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-721d34776388b47c153848b44642e1af3d3003ed6bcafb1d4f2f5985d4decb4a3</citedby><cites>FETCH-LOGICAL-c399t-721d34776388b47c153848b44642e1af3d3003ed6bcafb1d4f2f5985d4decb4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apenergy.2013.02.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27307234$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Muratori, Matteo</creatorcontrib><creatorcontrib>Roberts, Matthew C.</creatorcontrib><creatorcontrib>Sioshansi, Ramteen</creatorcontrib><creatorcontrib>Marano, Vincenzo</creatorcontrib><creatorcontrib>Rizzoni, Giorgio</creatorcontrib><title>A highly resolved modeling technique to simulate residential power demand</title><title>Applied energy</title><description>► Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data. ► The residential demand model allows reconstructing power consumption of a single or an aggregate group of households. ► A rigorous statistical validation framework has been developed to validate the proposed model. ► The residential demand model can serve as a tool to evaluate the effects of different technologies. ► The simulated residential demand loads show highly realistic patterns. This paper presents a model to simulate the electricity demand of a single household consisting of multiple individuals. The total consumption is divided into four main categories, namely cold appliances, heating, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities. The first three components are modeled using engineering physically-based models, while the activity patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation of the predicted electricity demand against metered data is provided. The results show highly realistic patterns that capture annual and diurnal variations, load fluctuations, and diversity between household configuration, location, and size.</description><subject>air conditioning</subject><subject>Air conditioning. Ventilation</subject><subject>Applied sciences</subject><subject>case studies</subject><subject>cold</subject><subject>diurnal variation</subject><subject>electricity</subject><subject>Energy</subject><subject>Energy demand modeling</subject><subject>energy use and consumption</subject><subject>Energy. Thermal use of fuels</subject><subject>engineering</subject><subject>Exact sciences and technology</subject><subject>heat</subject><subject>Heating, air conditioning and ventilation</subject><subject>Heterogeneous Markov chain</subject><subject>Household power demand</subject><subject>HVAC modeling</subject><subject>Markov chain</subject><subject>Occupant behavior</subject><subject>Residential electricity use</subject><subject>simulation models</subject><subject>Techniques, equipment. Control. Metering</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1v2zAQhomgAeI6-QuJlgJdpB4_RElbg6BJDRjokHgmaPJk06BEh5QT-N-XhtOume6G57338BByS6GiQOWPXaX3OGLcHCsGlFfAKqibCzKjbcPKjtL2C5kBB1kySbsr8jWlHQAwymBGFvfF1m22_lhETMG_oS2GYNG7cVNMaLajez1gMYUiueHg9YQnzlkcJ6d9sQ_vGAuLgx7tNbnstU948zHnZPX46-Xhd7n887R4uF-WhnfdVDaMWi6aRvK2XYvG0Jq3Im9CCoZU99xyAI5Wro3u19SKnvV119ZWWDRrofmcfD_f3ceQf0uTGlwy6L0eMRySojXUuQBakVF5Rk0MKUXs1T66QcejoqBO7tRO_XOnTu4UMJXd5eC3jw6djPZ91KNx6X-aNRwaxk8Fd2eu10HpTczM6jkfktkvlZxBJn6eCcxK3hxGlYzD0aB1Ec2kbHCfPfMX-i2Rug</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Muratori, Matteo</creator><creator>Roberts, Matthew C.</creator><creator>Sioshansi, Ramteen</creator><creator>Marano, Vincenzo</creator><creator>Rizzoni, Giorgio</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130701</creationdate><title>A highly resolved modeling technique to simulate residential power demand</title><author>Muratori, Matteo ; Roberts, Matthew C. ; Sioshansi, Ramteen ; Marano, Vincenzo ; Rizzoni, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-721d34776388b47c153848b44642e1af3d3003ed6bcafb1d4f2f5985d4decb4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>air conditioning</topic><topic>Air conditioning. Ventilation</topic><topic>Applied sciences</topic><topic>case studies</topic><topic>cold</topic><topic>diurnal variation</topic><topic>electricity</topic><topic>Energy</topic><topic>Energy demand modeling</topic><topic>energy use and consumption</topic><topic>Energy. Thermal use of fuels</topic><topic>engineering</topic><topic>Exact sciences and technology</topic><topic>heat</topic><topic>Heating, air conditioning and ventilation</topic><topic>Heterogeneous Markov chain</topic><topic>Household power demand</topic><topic>HVAC modeling</topic><topic>Markov chain</topic><topic>Occupant behavior</topic><topic>Residential electricity use</topic><topic>simulation models</topic><topic>Techniques, equipment. Control. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muratori, Matteo</creatorcontrib><creatorcontrib>Roberts, Matthew C.</creatorcontrib><creatorcontrib>Sioshansi, Ramteen</creatorcontrib><creatorcontrib>Marano, Vincenzo</creatorcontrib><creatorcontrib>Rizzoni, Giorgio</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muratori, Matteo</au><au>Roberts, Matthew C.</au><au>Sioshansi, Ramteen</au><au>Marano, Vincenzo</au><au>Rizzoni, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly resolved modeling technique to simulate residential power demand</atitle><jtitle>Applied energy</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>107</volume><spage>465</spage><epage>473</epage><pages>465-473</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>► Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data. ► The residential demand model allows reconstructing power consumption of a single or an aggregate group of households. ► A rigorous statistical validation framework has been developed to validate the proposed model. ► The residential demand model can serve as a tool to evaluate the effects of different technologies. ► The simulated residential demand loads show highly realistic patterns. This paper presents a model to simulate the electricity demand of a single household consisting of multiple individuals. The total consumption is divided into four main categories, namely cold appliances, heating, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities. The first three components are modeled using engineering physically-based models, while the activity patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation of the predicted electricity demand against metered data is provided. The results show highly realistic patterns that capture annual and diurnal variations, load fluctuations, and diversity between household configuration, location, and size.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2013.02.057</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2013-07, Vol.107, p.465-473
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_1505347084
source Elsevier ScienceDirect Journals Complete
subjects air conditioning
Air conditioning. Ventilation
Applied sciences
case studies
cold
diurnal variation
electricity
Energy
Energy demand modeling
energy use and consumption
Energy. Thermal use of fuels
engineering
Exact sciences and technology
heat
Heating, air conditioning and ventilation
Heterogeneous Markov chain
Household power demand
HVAC modeling
Markov chain
Occupant behavior
Residential electricity use
simulation models
Techniques, equipment. Control. Metering
title A highly resolved modeling technique to simulate residential power demand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20resolved%20modeling%20technique%20to%20simulate%20residential%20power%20demand&rft.jtitle=Applied%20energy&rft.au=Muratori,%20Matteo&rft.date=2013-07-01&rft.volume=107&rft.spage=465&rft.epage=473&rft.pages=465-473&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2013.02.057&rft_dat=%3Cproquest_cross%3E1505347084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505347084&rft_id=info:pmid/&rft_els_id=S030626191300175X&rfr_iscdi=true