Biological and climatic consequences of a cold, stratified, high latitude ocean

The flux from deep- and shallow-living radiolarian assemblages provides evidence of a glacial, high latitude, cold ocean stratification that increased biological pump efficiency and promoted ocean carbon sequestration. Greater deep (>200 m) than shallow-living (45° N) sediments with the deep-livi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quaternary science reviews 2013-12, Vol.82, p.78-92
Hauptverfasser: Hays, James D., Martinson, Douglas G., Morley, Joseph J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 78
container_title Quaternary science reviews
container_volume 82
creator Hays, James D.
Martinson, Douglas G.
Morley, Joseph J.
description The flux from deep- and shallow-living radiolarian assemblages provides evidence of a glacial, high latitude, cold ocean stratification that increased biological pump efficiency and promoted ocean carbon sequestration. Greater deep (>200 m) than shallow-living (45° N) sediments with the deep-living Cycladophora davisiana dominant (>24%). By contrast modern radiolarian flux consists primarily of shallow-living species (C. davisiana
doi_str_mv 10.1016/j.quascirev.2013.09.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505344016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0277379113003582</els_id><sourcerecordid>1505344016</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-658aecd10d667e00fb5f54b77ac6dc267d64efd59c542ed22045cee79cc878753</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxDXjJggTbieNkWSpeUqVuQGJnueNJ68qN2zipxN_jqogtq3nduZo5hNxxlnPGq8dNvh9NBNfjIReMFzlrcibEGZnwWhVZKdXXOZkwoVRWqIZfkqsYN4wxKWoxIYsnF3xYOTCems5S8G5rBgcUQhdxP2IHGGloqUkdbx9oHPo0bx2mfO1Wa-pTOYwWaQA03Q25aI2PePsbr8nny_PH7C2bL17fZ9N5ZgrFh6yStUGwnNmqUshYu5StLJdKGagsiErZqsTWygZkKdAKwUoJiKoBqFWtZHFN7k--uz6kK-Ogty4Cem86DGPUXDJZlGUClKTqJIU-xNhjq3d9erL_1pzpI0K90X8I9RGhZo1OCNPm9LSJ6ZODw14n0ZGITVIYtA3uX48fekl_aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505344016</pqid></control><display><type>article</type><title>Biological and climatic consequences of a cold, stratified, high latitude ocean</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Hays, James D. ; Martinson, Douglas G. ; Morley, Joseph J.</creator><creatorcontrib>Hays, James D. ; Martinson, Douglas G. ; Morley, Joseph J.</creatorcontrib><description>The flux from deep- and shallow-living radiolarian assemblages provides evidence of a glacial, high latitude, cold ocean stratification that increased biological pump efficiency and promoted ocean carbon sequestration. Greater deep (&gt;200 m) than shallow-living (&lt;200 m) radiolarian assemblage flux characterizes glacial North Pacific (&gt;45° N) sediments with the deep-living Cycladophora davisiana dominant (&gt;24%). By contrast modern radiolarian flux consists primarily of shallow-living species (C. davisiana &lt;10%). Clues to the cause of this unusual glacial radiolarian flux come from the presently, strongly stratified Sea of Okhotsk. Here beneath a thin nutrient depleted mixed layer radiolarian and zooplankton faunas conform to the sea's physical stratification with lower concentrations of both in a Cold (−1.5 to 1 °C) Intermediate Layer (CIL) (20–125 m) and higher concentrations in waters between 200 and 500 m (Nimmergut and Abelmann, 2002). This biological stratification generates a radiolarian flux echoing that of the glacial northwest Pacific with C. davisiana 26% of total flux. Widespread C. davisiana percentages (&gt;20%) in high latitude (&gt;45°) glacial sediments of both hemispheres is evidence that these oceans were capped with an Okhotsk-Like Stratification (O-LS). O-LS provides mechanisms to (1) strip nutrients from surface waters depriving the deep-ocean of preformed nutrients, increasing biological pump efficiency and (2) deepen carbon re-mineralization increasing deep-ocean alkalinity. Both may have contributed to lower glacial atmospheric CO2 concentrations. O-LS would also have amplified glacial climatic cycles by promoting the spread of high latitude sea ice in winter as occurs in the Sea of Okhotsk today, and reducing gas exchange between ocean and atmosphere in summer. •Sea of Okhotsk's stratification (O-LS) causes dominance of deep-living radiolarians.•North Pacific glacial deep radiolarian dominance signals the presence of O-LS.•O-LS strips nutrients from surface waters and deepens carbon remineralization.•Glacial Pacific – Holocene Okhotsk opal flux differences related to silica supply.</description><identifier>ISSN: 0277-3791</identifier><identifier>EISSN: 1873-457X</identifier><identifier>DOI: 10.1016/j.quascirev.2013.09.022</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biological pump ; Deep sea cores ; Flux ; Glacial ocean ; Holocene ; Marine ; North Pacific ; Ocean carbon sequestration ; Pleistocene ; Radiolaria ; Sea of Okhotsk ; Stratification</subject><ispartof>Quaternary science reviews, 2013-12, Vol.82, p.78-92</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-658aecd10d667e00fb5f54b77ac6dc267d64efd59c542ed22045cee79cc878753</citedby><cites>FETCH-LOGICAL-a371t-658aecd10d667e00fb5f54b77ac6dc267d64efd59c542ed22045cee79cc878753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.quascirev.2013.09.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Hays, James D.</creatorcontrib><creatorcontrib>Martinson, Douglas G.</creatorcontrib><creatorcontrib>Morley, Joseph J.</creatorcontrib><title>Biological and climatic consequences of a cold, stratified, high latitude ocean</title><title>Quaternary science reviews</title><description>The flux from deep- and shallow-living radiolarian assemblages provides evidence of a glacial, high latitude, cold ocean stratification that increased biological pump efficiency and promoted ocean carbon sequestration. Greater deep (&gt;200 m) than shallow-living (&lt;200 m) radiolarian assemblage flux characterizes glacial North Pacific (&gt;45° N) sediments with the deep-living Cycladophora davisiana dominant (&gt;24%). By contrast modern radiolarian flux consists primarily of shallow-living species (C. davisiana &lt;10%). Clues to the cause of this unusual glacial radiolarian flux come from the presently, strongly stratified Sea of Okhotsk. Here beneath a thin nutrient depleted mixed layer radiolarian and zooplankton faunas conform to the sea's physical stratification with lower concentrations of both in a Cold (−1.5 to 1 °C) Intermediate Layer (CIL) (20–125 m) and higher concentrations in waters between 200 and 500 m (Nimmergut and Abelmann, 2002). This biological stratification generates a radiolarian flux echoing that of the glacial northwest Pacific with C. davisiana 26% of total flux. Widespread C. davisiana percentages (&gt;20%) in high latitude (&gt;45°) glacial sediments of both hemispheres is evidence that these oceans were capped with an Okhotsk-Like Stratification (O-LS). O-LS provides mechanisms to (1) strip nutrients from surface waters depriving the deep-ocean of preformed nutrients, increasing biological pump efficiency and (2) deepen carbon re-mineralization increasing deep-ocean alkalinity. Both may have contributed to lower glacial atmospheric CO2 concentrations. O-LS would also have amplified glacial climatic cycles by promoting the spread of high latitude sea ice in winter as occurs in the Sea of Okhotsk today, and reducing gas exchange between ocean and atmosphere in summer. •Sea of Okhotsk's stratification (O-LS) causes dominance of deep-living radiolarians.•North Pacific glacial deep radiolarian dominance signals the presence of O-LS.•O-LS strips nutrients from surface waters and deepens carbon remineralization.•Glacial Pacific – Holocene Okhotsk opal flux differences related to silica supply.</description><subject>Biological pump</subject><subject>Deep sea cores</subject><subject>Flux</subject><subject>Glacial ocean</subject><subject>Holocene</subject><subject>Marine</subject><subject>North Pacific</subject><subject>Ocean carbon sequestration</subject><subject>Pleistocene</subject><subject>Radiolaria</subject><subject>Sea of Okhotsk</subject><subject>Stratification</subject><issn>0277-3791</issn><issn>1873-457X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxDXjJggTbieNkWSpeUqVuQGJnueNJ68qN2zipxN_jqogtq3nduZo5hNxxlnPGq8dNvh9NBNfjIReMFzlrcibEGZnwWhVZKdXXOZkwoVRWqIZfkqsYN4wxKWoxIYsnF3xYOTCems5S8G5rBgcUQhdxP2IHGGloqUkdbx9oHPo0bx2mfO1Wa-pTOYwWaQA03Q25aI2PePsbr8nny_PH7C2bL17fZ9N5ZgrFh6yStUGwnNmqUshYu5StLJdKGagsiErZqsTWygZkKdAKwUoJiKoBqFWtZHFN7k--uz6kK-Ogty4Cem86DGPUXDJZlGUClKTqJIU-xNhjq3d9erL_1pzpI0K90X8I9RGhZo1OCNPm9LSJ6ZODw14n0ZGITVIYtA3uX48fekl_aA</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Hays, James D.</creator><creator>Martinson, Douglas G.</creator><creator>Morley, Joseph J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20131215</creationdate><title>Biological and climatic consequences of a cold, stratified, high latitude ocean</title><author>Hays, James D. ; Martinson, Douglas G. ; Morley, Joseph J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-658aecd10d667e00fb5f54b77ac6dc267d64efd59c542ed22045cee79cc878753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological pump</topic><topic>Deep sea cores</topic><topic>Flux</topic><topic>Glacial ocean</topic><topic>Holocene</topic><topic>Marine</topic><topic>North Pacific</topic><topic>Ocean carbon sequestration</topic><topic>Pleistocene</topic><topic>Radiolaria</topic><topic>Sea of Okhotsk</topic><topic>Stratification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hays, James D.</creatorcontrib><creatorcontrib>Martinson, Douglas G.</creatorcontrib><creatorcontrib>Morley, Joseph J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Quaternary science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hays, James D.</au><au>Martinson, Douglas G.</au><au>Morley, Joseph J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological and climatic consequences of a cold, stratified, high latitude ocean</atitle><jtitle>Quaternary science reviews</jtitle><date>2013-12-15</date><risdate>2013</risdate><volume>82</volume><spage>78</spage><epage>92</epage><pages>78-92</pages><issn>0277-3791</issn><eissn>1873-457X</eissn><abstract>The flux from deep- and shallow-living radiolarian assemblages provides evidence of a glacial, high latitude, cold ocean stratification that increased biological pump efficiency and promoted ocean carbon sequestration. Greater deep (&gt;200 m) than shallow-living (&lt;200 m) radiolarian assemblage flux characterizes glacial North Pacific (&gt;45° N) sediments with the deep-living Cycladophora davisiana dominant (&gt;24%). By contrast modern radiolarian flux consists primarily of shallow-living species (C. davisiana &lt;10%). Clues to the cause of this unusual glacial radiolarian flux come from the presently, strongly stratified Sea of Okhotsk. Here beneath a thin nutrient depleted mixed layer radiolarian and zooplankton faunas conform to the sea's physical stratification with lower concentrations of both in a Cold (−1.5 to 1 °C) Intermediate Layer (CIL) (20–125 m) and higher concentrations in waters between 200 and 500 m (Nimmergut and Abelmann, 2002). This biological stratification generates a radiolarian flux echoing that of the glacial northwest Pacific with C. davisiana 26% of total flux. Widespread C. davisiana percentages (&gt;20%) in high latitude (&gt;45°) glacial sediments of both hemispheres is evidence that these oceans were capped with an Okhotsk-Like Stratification (O-LS). O-LS provides mechanisms to (1) strip nutrients from surface waters depriving the deep-ocean of preformed nutrients, increasing biological pump efficiency and (2) deepen carbon re-mineralization increasing deep-ocean alkalinity. Both may have contributed to lower glacial atmospheric CO2 concentrations. O-LS would also have amplified glacial climatic cycles by promoting the spread of high latitude sea ice in winter as occurs in the Sea of Okhotsk today, and reducing gas exchange between ocean and atmosphere in summer. •Sea of Okhotsk's stratification (O-LS) causes dominance of deep-living radiolarians.•North Pacific glacial deep radiolarian dominance signals the presence of O-LS.•O-LS strips nutrients from surface waters and deepens carbon remineralization.•Glacial Pacific – Holocene Okhotsk opal flux differences related to silica supply.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.quascirev.2013.09.022</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-3791
ispartof Quaternary science reviews, 2013-12, Vol.82, p.78-92
issn 0277-3791
1873-457X
language eng
recordid cdi_proquest_miscellaneous_1505344016
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Biological pump
Deep sea cores
Flux
Glacial ocean
Holocene
Marine
North Pacific
Ocean carbon sequestration
Pleistocene
Radiolaria
Sea of Okhotsk
Stratification
title Biological and climatic consequences of a cold, stratified, high latitude ocean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20and%20climatic%20consequences%20of%20a%20cold,%20stratified,%20high%20latitude%20ocean&rft.jtitle=Quaternary%20science%20reviews&rft.au=Hays,%20James%20D.&rft.date=2013-12-15&rft.volume=82&rft.spage=78&rft.epage=92&rft.pages=78-92&rft.issn=0277-3791&rft.eissn=1873-457X&rft_id=info:doi/10.1016/j.quascirev.2013.09.022&rft_dat=%3Cproquest_cross%3E1505344016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505344016&rft_id=info:pmid/&rft_els_id=S0277379113003582&rfr_iscdi=true