Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis After Spinal Cord Injury in Rats

Autophagy is an intracellular catabolic mechanism that maintains the balance of proteins, lipids and aging organelles. 3-Methyladenine (3-MA) is a selective inhibitor of autophagy, whereas rapamycin, an antifungal agent, is a specific inducer of autophagy, inhibiting the protein mammalian target of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2014-02, Vol.49 (1), p.276-287
Hauptverfasser: Tang, Peifu, Hou, Hongping, Zhang, Licheng, Lan, Xia, Mao, Zhi, Liu, Daohong, He, Chunqing, Du, Hailong, Zhang, Lihai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 1
container_start_page 276
container_title Molecular neurobiology
container_volume 49
creator Tang, Peifu
Hou, Hongping
Zhang, Licheng
Lan, Xia
Mao, Zhi
Liu, Daohong
He, Chunqing
Du, Hailong
Zhang, Lihai
description Autophagy is an intracellular catabolic mechanism that maintains the balance of proteins, lipids and aging organelles. 3-Methyladenine (3-MA) is a selective inhibitor of autophagy, whereas rapamycin, an antifungal agent, is a specific inducer of autophagy, inhibiting the protein mammalian target of rapamycin. In the present study, we examined the role of autophagy, inhibited by 3-MA and enhanced by rapamycin, in a model of acute spinal cord injury in rats. We found that rapamycin could significantly increase the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin1 at the injury site. At the same time, the number of neurons and astrocytes with LC3 positive in the spinal cord was upregulated with time. In addition, administration of rapamycin produced an increase in the Basso, Beattie and Bresnahan scores of injured rats, indicating high recovery of locomotor function. Furthermore, expression of the proteins Bcl-2 and Bax was upregulated and downregulated, respectively. By contrast, the results for rats treated with 3-MA, which inhibits autophagy, were the opposite of those seen with the rapamycin-treated rats. These results show that induction of autophagy can produce neuroprotective effects in acute spinal cord injury in rats via inhibition of apoptosis.
doi_str_mv 10.1007/s12035-013-8518-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1505330774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505330774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-e66450853f0315d0e891d6da1ef1052bb9f2a33c3b49112e63662d6cc611402f3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7rj6A7xIwIuX1lQqSXeOw_i1MKiseg7pdHo2w3SnTboX5uJvN-OsIoJ4qkA971uEh5CnwF4CY_WrDJyhrBhg1UhoKrxHViClrgAafp-sWKOxqpVoLsijnPeMcQ6sfkguOGoptKpX5Pt6meN0Y3dHeu27xflMP_glxdEe6Gs72J2nduzopxSHOJflNrrTK6aCu3jr05HeBkuvxpvQhjnEkcaerqc4zTGHTNf97BP9PIVT3yamrpD7pYTCSK_tnB-TB709ZP_kbl6Sr2_ffNm8r7Yf311t1tvKiRrmyislJGsk9gxBdsw3GjrVWfA9MMnbVvfcIjpshQbgXqFSvFPOKQDBeI-X5MW5d0rx2-LzbIaQnT8c7Ojjkg1IJhFZXYv_o0JrQKyFKujzv9B9XFL56k9KMeRKN4WCM-VSzDn53kwpDDYdDTBz8mjOHk3xaE4eDZbMs7vmpR189zvxS1wB-BnIZTXufPrj9D9bfwDgGqcv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496032698</pqid></control><display><type>article</type><title>Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis After Spinal Cord Injury in Rats</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tang, Peifu ; Hou, Hongping ; Zhang, Licheng ; Lan, Xia ; Mao, Zhi ; Liu, Daohong ; He, Chunqing ; Du, Hailong ; Zhang, Lihai</creator><creatorcontrib>Tang, Peifu ; Hou, Hongping ; Zhang, Licheng ; Lan, Xia ; Mao, Zhi ; Liu, Daohong ; He, Chunqing ; Du, Hailong ; Zhang, Lihai</creatorcontrib><description>Autophagy is an intracellular catabolic mechanism that maintains the balance of proteins, lipids and aging organelles. 3-Methyladenine (3-MA) is a selective inhibitor of autophagy, whereas rapamycin, an antifungal agent, is a specific inducer of autophagy, inhibiting the protein mammalian target of rapamycin. In the present study, we examined the role of autophagy, inhibited by 3-MA and enhanced by rapamycin, in a model of acute spinal cord injury in rats. We found that rapamycin could significantly increase the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin1 at the injury site. At the same time, the number of neurons and astrocytes with LC3 positive in the spinal cord was upregulated with time. In addition, administration of rapamycin produced an increase in the Basso, Beattie and Bresnahan scores of injured rats, indicating high recovery of locomotor function. Furthermore, expression of the proteins Bcl-2 and Bax was upregulated and downregulated, respectively. By contrast, the results for rats treated with 3-MA, which inhibits autophagy, were the opposite of those seen with the rapamycin-treated rats. These results show that induction of autophagy can produce neuroprotective effects in acute spinal cord injury in rats via inhibition of apoptosis.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-013-8518-3</identifier><identifier>PMID: 23954967</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Apoptosis ; Apoptosis - physiology ; Autophagy ; Autophagy - drug effects ; Autophagy - physiology ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Male ; Motor Activity - drug effects ; Motor Activity - physiology ; Neurobiology ; Neurology ; Neurons ; Neurons - drug effects ; Neurons - pathology ; Neurosciences ; Rats ; Rats, Sprague-Dawley ; Recovery of Function - drug effects ; Recovery of Function - physiology ; Sirolimus - pharmacology ; Sirolimus - therapeutic use ; Spinal cord injuries ; Spinal Cord Injuries - pathology ; Spinal Cord Injuries - prevention &amp; control ; Thoracic Vertebrae</subject><ispartof>Molecular neurobiology, 2014-02, Vol.49 (1), p.276-287</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-e66450853f0315d0e891d6da1ef1052bb9f2a33c3b49112e63662d6cc611402f3</citedby><cites>FETCH-LOGICAL-c471t-e66450853f0315d0e891d6da1ef1052bb9f2a33c3b49112e63662d6cc611402f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-013-8518-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-013-8518-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23954967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Peifu</creatorcontrib><creatorcontrib>Hou, Hongping</creatorcontrib><creatorcontrib>Zhang, Licheng</creatorcontrib><creatorcontrib>Lan, Xia</creatorcontrib><creatorcontrib>Mao, Zhi</creatorcontrib><creatorcontrib>Liu, Daohong</creatorcontrib><creatorcontrib>He, Chunqing</creatorcontrib><creatorcontrib>Du, Hailong</creatorcontrib><creatorcontrib>Zhang, Lihai</creatorcontrib><title>Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis After Spinal Cord Injury in Rats</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Autophagy is an intracellular catabolic mechanism that maintains the balance of proteins, lipids and aging organelles. 3-Methyladenine (3-MA) is a selective inhibitor of autophagy, whereas rapamycin, an antifungal agent, is a specific inducer of autophagy, inhibiting the protein mammalian target of rapamycin. In the present study, we examined the role of autophagy, inhibited by 3-MA and enhanced by rapamycin, in a model of acute spinal cord injury in rats. We found that rapamycin could significantly increase the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin1 at the injury site. At the same time, the number of neurons and astrocytes with LC3 positive in the spinal cord was upregulated with time. In addition, administration of rapamycin produced an increase in the Basso, Beattie and Bresnahan scores of injured rats, indicating high recovery of locomotor function. Furthermore, expression of the proteins Bcl-2 and Bax was upregulated and downregulated, respectively. By contrast, the results for rats treated with 3-MA, which inhibits autophagy, were the opposite of those seen with the rapamycin-treated rats. These results show that induction of autophagy can produce neuroprotective effects in acute spinal cord injury in rats via inhibition of apoptosis.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Male</subject><subject>Motor Activity - drug effects</subject><subject>Motor Activity - physiology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - pathology</subject><subject>Neurosciences</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recovery of Function - drug effects</subject><subject>Recovery of Function - physiology</subject><subject>Sirolimus - pharmacology</subject><subject>Sirolimus - therapeutic use</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - pathology</subject><subject>Spinal Cord Injuries - prevention &amp; control</subject><subject>Thoracic Vertebrae</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU2LFDEQhoMo7rj6A7xIwIuX1lQqSXeOw_i1MKiseg7pdHo2w3SnTboX5uJvN-OsIoJ4qkA971uEh5CnwF4CY_WrDJyhrBhg1UhoKrxHViClrgAafp-sWKOxqpVoLsijnPeMcQ6sfkguOGoptKpX5Pt6meN0Y3dHeu27xflMP_glxdEe6Gs72J2nduzopxSHOJflNrrTK6aCu3jr05HeBkuvxpvQhjnEkcaerqc4zTGHTNf97BP9PIVT3yamrpD7pYTCSK_tnB-TB709ZP_kbl6Sr2_ffNm8r7Yf311t1tvKiRrmyislJGsk9gxBdsw3GjrVWfA9MMnbVvfcIjpshQbgXqFSvFPOKQDBeI-X5MW5d0rx2-LzbIaQnT8c7Ojjkg1IJhFZXYv_o0JrQKyFKujzv9B9XFL56k9KMeRKN4WCM-VSzDn53kwpDDYdDTBz8mjOHk3xaE4eDZbMs7vmpR189zvxS1wB-BnIZTXufPrj9D9bfwDgGqcv</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Tang, Peifu</creator><creator>Hou, Hongping</creator><creator>Zhang, Licheng</creator><creator>Lan, Xia</creator><creator>Mao, Zhi</creator><creator>Liu, Daohong</creator><creator>He, Chunqing</creator><creator>Du, Hailong</creator><creator>Zhang, Lihai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20140201</creationdate><title>Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis After Spinal Cord Injury in Rats</title><author>Tang, Peifu ; Hou, Hongping ; Zhang, Licheng ; Lan, Xia ; Mao, Zhi ; Liu, Daohong ; He, Chunqing ; Du, Hailong ; Zhang, Lihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-e66450853f0315d0e891d6da1ef1052bb9f2a33c3b49112e63662d6cc611402f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Male</topic><topic>Motor Activity - drug effects</topic><topic>Motor Activity - physiology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - pathology</topic><topic>Neurosciences</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recovery of Function - drug effects</topic><topic>Recovery of Function - physiology</topic><topic>Sirolimus - pharmacology</topic><topic>Sirolimus - therapeutic use</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - pathology</topic><topic>Spinal Cord Injuries - prevention &amp; control</topic><topic>Thoracic Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Peifu</creatorcontrib><creatorcontrib>Hou, Hongping</creatorcontrib><creatorcontrib>Zhang, Licheng</creatorcontrib><creatorcontrib>Lan, Xia</creatorcontrib><creatorcontrib>Mao, Zhi</creatorcontrib><creatorcontrib>Liu, Daohong</creatorcontrib><creatorcontrib>He, Chunqing</creatorcontrib><creatorcontrib>Du, Hailong</creatorcontrib><creatorcontrib>Zhang, Lihai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Peifu</au><au>Hou, Hongping</au><au>Zhang, Licheng</au><au>Lan, Xia</au><au>Mao, Zhi</au><au>Liu, Daohong</au><au>He, Chunqing</au><au>Du, Hailong</au><au>Zhang, Lihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis After Spinal Cord Injury in Rats</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>49</volume><issue>1</issue><spage>276</spage><epage>287</epage><pages>276-287</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Autophagy is an intracellular catabolic mechanism that maintains the balance of proteins, lipids and aging organelles. 3-Methyladenine (3-MA) is a selective inhibitor of autophagy, whereas rapamycin, an antifungal agent, is a specific inducer of autophagy, inhibiting the protein mammalian target of rapamycin. In the present study, we examined the role of autophagy, inhibited by 3-MA and enhanced by rapamycin, in a model of acute spinal cord injury in rats. We found that rapamycin could significantly increase the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin1 at the injury site. At the same time, the number of neurons and astrocytes with LC3 positive in the spinal cord was upregulated with time. In addition, administration of rapamycin produced an increase in the Basso, Beattie and Bresnahan scores of injured rats, indicating high recovery of locomotor function. Furthermore, expression of the proteins Bcl-2 and Bax was upregulated and downregulated, respectively. By contrast, the results for rats treated with 3-MA, which inhibits autophagy, were the opposite of those seen with the rapamycin-treated rats. These results show that induction of autophagy can produce neuroprotective effects in acute spinal cord injury in rats via inhibition of apoptosis.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23954967</pmid><doi>10.1007/s12035-013-8518-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2014-02, Vol.49 (1), p.276-287
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_1505330774
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Apoptosis
Apoptosis - physiology
Autophagy
Autophagy - drug effects
Autophagy - physiology
Biomedical and Life Sciences
Biomedicine
Cell Biology
Male
Motor Activity - drug effects
Motor Activity - physiology
Neurobiology
Neurology
Neurons
Neurons - drug effects
Neurons - pathology
Neurosciences
Rats
Rats, Sprague-Dawley
Recovery of Function - drug effects
Recovery of Function - physiology
Sirolimus - pharmacology
Sirolimus - therapeutic use
Spinal cord injuries
Spinal Cord Injuries - pathology
Spinal Cord Injuries - prevention & control
Thoracic Vertebrae
title Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis After Spinal Cord Injury in Rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy%20Reduces%20Neuronal%20Damage%20and%20Promotes%20Locomotor%20Recovery%20via%20Inhibition%20of%20Apoptosis%20After%20Spinal%20Cord%20Injury%20in%20Rats&rft.jtitle=Molecular%20neurobiology&rft.au=Tang,%20Peifu&rft.date=2014-02-01&rft.volume=49&rft.issue=1&rft.spage=276&rft.epage=287&rft.pages=276-287&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-013-8518-3&rft_dat=%3Cproquest_cross%3E1505330774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496032698&rft_id=info:pmid/23954967&rfr_iscdi=true