Silaindacenodithiophene-Based Molecular Donor: Morphological Features and Use in the Fabrication of Compositionally Tolerant, High-Efficiency Bulk Heterojunction Solar Cells

A novel solution-processable small molecule, namely, benzo[1,2-b:4,5-b]bis(4,4′-dihexyl-4H-silolo[3,2-b]thiophene-2,2′-diyl)bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole (p-SIDT(FBTTh2)2), was designed and synthesized by utilizing the silaindacenodithiophene (SIDT) fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2014-03, Vol.136 (9), p.3597-3606
Hauptverfasser: Love, John A, Nagao, Ikuhiro, Huang, Ye, Kuik, Martijn, Gupta, Vinay, Takacs, Christopher J, Coughlin, Jessica E, Qi, Li, van der Poll, Thomas S, Kramer, Edward J, Heeger, Alan J, Nguyen, Thuc-Quyen, Bazan, Guillermo C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3606
container_issue 9
container_start_page 3597
container_title Journal of the American Chemical Society
container_volume 136
creator Love, John A
Nagao, Ikuhiro
Huang, Ye
Kuik, Martijn
Gupta, Vinay
Takacs, Christopher J
Coughlin, Jessica E
Qi, Li
van der Poll, Thomas S
Kramer, Edward J
Heeger, Alan J
Nguyen, Thuc-Quyen
Bazan, Guillermo C
description A novel solution-processable small molecule, namely, benzo[1,2-b:4,5-b]bis(4,4′-dihexyl-4H-silolo[3,2-b]thiophene-2,2′-diyl)bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole (p-SIDT(FBTTh2)2), was designed and synthesized by utilizing the silaindacenodithiophene (SIDT) framework as the central D2 donor unit within the D1AD2AD1 chromophore configuration. Relative to the widely studied 7,7′-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole] (p-DTS(FBTTh2)2), which contains the stronger donor fragment dithienosilole (DTS) as D2, one finds that p-SIDT(FBTTh2)2 exhibits a wider band gap and can be used to fabricate bulk heterojunction solar cells with higher open circuit voltage (0.91 V). Most remarkably, thin films comprising p-SIDT(FBTTh2)2 can achieve exceptional levels of self-organization directly via solution deposition. For example, high-resolution transmission electron microscopy analysis shows that p-SIDT(FBTTh2)2 spin-cast from chlorobenzene organizes into crystalline domains with lattice planes that extend over length scales on the order of hundreds of nanometers. Such features suggest liquid crystalline properties during the evolution of the film. Moreover, grazing incidence wide-angle X-ray scattering analysis shows a strong tendency for the molecules to exist with a strong “face-on” orientation relative to the substrate plane. Similar structural features, albeit of more restricted dimensions, can be observed within p-SIDT(FBTTh2)2:PC71BM bulk heterojunction thin films when the films are processed with 0.4% diiodooctane (DIO) solvent additive. DIO use also increases the solar cell power conversion efficiencies (PCEs) from 1.7% to 6.4%. Of significance from a practical device fabrication perspective is that, for p-SIDT(FBTTh2)2:PC71BM blends, there is a wide range of compositions (from 20:80 to 70:30 p-SIDT(FBTTh2)2:PC71BM) that provide good photovoltaic response, i.e., PCE = 4–6%, indicating a robust tendency to form the necessary continuous phases for charge carrier collection. Light intensity photocurrent measurements, charge selective diode fabrication, and internal quantum efficiency determinations were carried out to obtain insight into the mechanism of device operation. Inclusion of DIO in the casting solution results in films that exhibit much lower photocurrent dependence on voltage and a concomitant increase in fill factor
doi_str_mv 10.1021/ja412473p
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1504736311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1504736311</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-78c71d4ab718d9ff9a8ed51abeedcf2ad8de2cab5a840f38df36bb40859b05073</originalsourceid><addsrcrecordid>eNptkc9uEzEQhy0EoqFw4AWQhYQEEgu29z83GhqCVMSh7Xk1a4-7Do692N5DHop3xCGlJ07WWN98M_aPkJecfeBM8I87qLio2nJ-RFa8FqyouWgekxVjTBRt15Rn5FmMu1xWouNPyZmo6roXXbMiv6-NBeMUSHRemTQZP0_osLiAiIp-9xblYiHQL9758ClfhHny1t8ZCZZuENISMFJwit5GpMbRNCHdwBgykIx31Gu69vvZR3MswdoDvcnWAC69p1tzNxWXWhtp0MkDvVjsT7rFhMHvFif_Cq79cf4arY3PyRMNNuKL-_Oc3G4ub9bb4urH12_rz1cFVKxL-cmy5aqCseWd6rXuoUNVcxgRldQCVKdQSBhr6Cqmy07pshnH3Fr3I6tZW56T1yevj8kMUZqEcpLeOZRp4LzhTc8y9PYEzcH_WjCmYW-izGuCQ7_EgdcsZ9KUnGf03QmVwccYUA9zMHsIh4Gz4Rjh8BBhZl_da5dxj-qB_JdZBt6cAJBx2Pkl5E-N_xH9AQ0jpo0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504736311</pqid></control><display><type>article</type><title>Silaindacenodithiophene-Based Molecular Donor: Morphological Features and Use in the Fabrication of Compositionally Tolerant, High-Efficiency Bulk Heterojunction Solar Cells</title><source>ACS Publications</source><creator>Love, John A ; Nagao, Ikuhiro ; Huang, Ye ; Kuik, Martijn ; Gupta, Vinay ; Takacs, Christopher J ; Coughlin, Jessica E ; Qi, Li ; van der Poll, Thomas S ; Kramer, Edward J ; Heeger, Alan J ; Nguyen, Thuc-Quyen ; Bazan, Guillermo C</creator><creatorcontrib>Love, John A ; Nagao, Ikuhiro ; Huang, Ye ; Kuik, Martijn ; Gupta, Vinay ; Takacs, Christopher J ; Coughlin, Jessica E ; Qi, Li ; van der Poll, Thomas S ; Kramer, Edward J ; Heeger, Alan J ; Nguyen, Thuc-Quyen ; Bazan, Guillermo C ; Center for Energy Efficient Materials (CEEM) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>A novel solution-processable small molecule, namely, benzo[1,2-b:4,5-b]bis(4,4′-dihexyl-4H-silolo[3,2-b]thiophene-2,2′-diyl)bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole (p-SIDT(FBTTh2)2), was designed and synthesized by utilizing the silaindacenodithiophene (SIDT) framework as the central D2 donor unit within the D1AD2AD1 chromophore configuration. Relative to the widely studied 7,7′-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole] (p-DTS(FBTTh2)2), which contains the stronger donor fragment dithienosilole (DTS) as D2, one finds that p-SIDT(FBTTh2)2 exhibits a wider band gap and can be used to fabricate bulk heterojunction solar cells with higher open circuit voltage (0.91 V). Most remarkably, thin films comprising p-SIDT(FBTTh2)2 can achieve exceptional levels of self-organization directly via solution deposition. For example, high-resolution transmission electron microscopy analysis shows that p-SIDT(FBTTh2)2 spin-cast from chlorobenzene organizes into crystalline domains with lattice planes that extend over length scales on the order of hundreds of nanometers. Such features suggest liquid crystalline properties during the evolution of the film. Moreover, grazing incidence wide-angle X-ray scattering analysis shows a strong tendency for the molecules to exist with a strong “face-on” orientation relative to the substrate plane. Similar structural features, albeit of more restricted dimensions, can be observed within p-SIDT(FBTTh2)2:PC71BM bulk heterojunction thin films when the films are processed with 0.4% diiodooctane (DIO) solvent additive. DIO use also increases the solar cell power conversion efficiencies (PCEs) from 1.7% to 6.4%. Of significance from a practical device fabrication perspective is that, for p-SIDT(FBTTh2)2:PC71BM blends, there is a wide range of compositions (from 20:80 to 70:30 p-SIDT(FBTTh2)2:PC71BM) that provide good photovoltaic response, i.e., PCE = 4–6%, indicating a robust tendency to form the necessary continuous phases for charge carrier collection. Light intensity photocurrent measurements, charge selective diode fabrication, and internal quantum efficiency determinations were carried out to obtain insight into the mechanism of device operation. Inclusion of DIO in the casting solution results in films that exhibit much lower photocurrent dependence on voltage and a concomitant increase in fill factor. At the optimum blend ratio, devices show high charge carrier mobilities, while mismatched hole and electron mobilities in blends with high or low donor content result in reduced fill factors and device performance.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja412473p</identifier><identifier>PMID: 24559286</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><ispartof>Journal of the American Chemical Society, 2014-03, Vol.136 (9), p.3597-3606</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-78c71d4ab718d9ff9a8ed51abeedcf2ad8de2cab5a840f38df36bb40859b05073</citedby><cites>FETCH-LOGICAL-a408t-78c71d4ab718d9ff9a8ed51abeedcf2ad8de2cab5a840f38df36bb40859b05073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja412473p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja412473p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24559286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1161690$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Love, John A</creatorcontrib><creatorcontrib>Nagao, Ikuhiro</creatorcontrib><creatorcontrib>Huang, Ye</creatorcontrib><creatorcontrib>Kuik, Martijn</creatorcontrib><creatorcontrib>Gupta, Vinay</creatorcontrib><creatorcontrib>Takacs, Christopher J</creatorcontrib><creatorcontrib>Coughlin, Jessica E</creatorcontrib><creatorcontrib>Qi, Li</creatorcontrib><creatorcontrib>van der Poll, Thomas S</creatorcontrib><creatorcontrib>Kramer, Edward J</creatorcontrib><creatorcontrib>Heeger, Alan J</creatorcontrib><creatorcontrib>Nguyen, Thuc-Quyen</creatorcontrib><creatorcontrib>Bazan, Guillermo C</creatorcontrib><creatorcontrib>Center for Energy Efficient Materials (CEEM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>Silaindacenodithiophene-Based Molecular Donor: Morphological Features and Use in the Fabrication of Compositionally Tolerant, High-Efficiency Bulk Heterojunction Solar Cells</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A novel solution-processable small molecule, namely, benzo[1,2-b:4,5-b]bis(4,4′-dihexyl-4H-silolo[3,2-b]thiophene-2,2′-diyl)bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole (p-SIDT(FBTTh2)2), was designed and synthesized by utilizing the silaindacenodithiophene (SIDT) framework as the central D2 donor unit within the D1AD2AD1 chromophore configuration. Relative to the widely studied 7,7′-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole] (p-DTS(FBTTh2)2), which contains the stronger donor fragment dithienosilole (DTS) as D2, one finds that p-SIDT(FBTTh2)2 exhibits a wider band gap and can be used to fabricate bulk heterojunction solar cells with higher open circuit voltage (0.91 V). Most remarkably, thin films comprising p-SIDT(FBTTh2)2 can achieve exceptional levels of self-organization directly via solution deposition. For example, high-resolution transmission electron microscopy analysis shows that p-SIDT(FBTTh2)2 spin-cast from chlorobenzene organizes into crystalline domains with lattice planes that extend over length scales on the order of hundreds of nanometers. Such features suggest liquid crystalline properties during the evolution of the film. Moreover, grazing incidence wide-angle X-ray scattering analysis shows a strong tendency for the molecules to exist with a strong “face-on” orientation relative to the substrate plane. Similar structural features, albeit of more restricted dimensions, can be observed within p-SIDT(FBTTh2)2:PC71BM bulk heterojunction thin films when the films are processed with 0.4% diiodooctane (DIO) solvent additive. DIO use also increases the solar cell power conversion efficiencies (PCEs) from 1.7% to 6.4%. Of significance from a practical device fabrication perspective is that, for p-SIDT(FBTTh2)2:PC71BM blends, there is a wide range of compositions (from 20:80 to 70:30 p-SIDT(FBTTh2)2:PC71BM) that provide good photovoltaic response, i.e., PCE = 4–6%, indicating a robust tendency to form the necessary continuous phases for charge carrier collection. Light intensity photocurrent measurements, charge selective diode fabrication, and internal quantum efficiency determinations were carried out to obtain insight into the mechanism of device operation. Inclusion of DIO in the casting solution results in films that exhibit much lower photocurrent dependence on voltage and a concomitant increase in fill factor. At the optimum blend ratio, devices show high charge carrier mobilities, while mismatched hole and electron mobilities in blends with high or low donor content result in reduced fill factors and device performance.</description><subject>solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkc9uEzEQhy0EoqFw4AWQhYQEEgu29z83GhqCVMSh7Xk1a4-7Do692N5DHop3xCGlJ07WWN98M_aPkJecfeBM8I87qLio2nJ-RFa8FqyouWgekxVjTBRt15Rn5FmMu1xWouNPyZmo6roXXbMiv6-NBeMUSHRemTQZP0_osLiAiIp-9xblYiHQL9758ClfhHny1t8ZCZZuENISMFJwit5GpMbRNCHdwBgykIx31Gu69vvZR3MswdoDvcnWAC69p1tzNxWXWhtp0MkDvVjsT7rFhMHvFif_Cq79cf4arY3PyRMNNuKL-_Oc3G4ub9bb4urH12_rz1cFVKxL-cmy5aqCseWd6rXuoUNVcxgRldQCVKdQSBhr6Cqmy07pshnH3Fr3I6tZW56T1yevj8kMUZqEcpLeOZRp4LzhTc8y9PYEzcH_WjCmYW-izGuCQ7_EgdcsZ9KUnGf03QmVwccYUA9zMHsIh4Gz4Rjh8BBhZl_da5dxj-qB_JdZBt6cAJBx2Pkl5E-N_xH9AQ0jpo0</recordid><startdate>20140305</startdate><enddate>20140305</enddate><creator>Love, John A</creator><creator>Nagao, Ikuhiro</creator><creator>Huang, Ye</creator><creator>Kuik, Martijn</creator><creator>Gupta, Vinay</creator><creator>Takacs, Christopher J</creator><creator>Coughlin, Jessica E</creator><creator>Qi, Li</creator><creator>van der Poll, Thomas S</creator><creator>Kramer, Edward J</creator><creator>Heeger, Alan J</creator><creator>Nguyen, Thuc-Quyen</creator><creator>Bazan, Guillermo C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140305</creationdate><title>Silaindacenodithiophene-Based Molecular Donor: Morphological Features and Use in the Fabrication of Compositionally Tolerant, High-Efficiency Bulk Heterojunction Solar Cells</title><author>Love, John A ; Nagao, Ikuhiro ; Huang, Ye ; Kuik, Martijn ; Gupta, Vinay ; Takacs, Christopher J ; Coughlin, Jessica E ; Qi, Li ; van der Poll, Thomas S ; Kramer, Edward J ; Heeger, Alan J ; Nguyen, Thuc-Quyen ; Bazan, Guillermo C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-78c71d4ab718d9ff9a8ed51abeedcf2ad8de2cab5a840f38df36bb40859b05073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Love, John A</creatorcontrib><creatorcontrib>Nagao, Ikuhiro</creatorcontrib><creatorcontrib>Huang, Ye</creatorcontrib><creatorcontrib>Kuik, Martijn</creatorcontrib><creatorcontrib>Gupta, Vinay</creatorcontrib><creatorcontrib>Takacs, Christopher J</creatorcontrib><creatorcontrib>Coughlin, Jessica E</creatorcontrib><creatorcontrib>Qi, Li</creatorcontrib><creatorcontrib>van der Poll, Thomas S</creatorcontrib><creatorcontrib>Kramer, Edward J</creatorcontrib><creatorcontrib>Heeger, Alan J</creatorcontrib><creatorcontrib>Nguyen, Thuc-Quyen</creatorcontrib><creatorcontrib>Bazan, Guillermo C</creatorcontrib><creatorcontrib>Center for Energy Efficient Materials (CEEM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Love, John A</au><au>Nagao, Ikuhiro</au><au>Huang, Ye</au><au>Kuik, Martijn</au><au>Gupta, Vinay</au><au>Takacs, Christopher J</au><au>Coughlin, Jessica E</au><au>Qi, Li</au><au>van der Poll, Thomas S</au><au>Kramer, Edward J</au><au>Heeger, Alan J</au><au>Nguyen, Thuc-Quyen</au><au>Bazan, Guillermo C</au><aucorp>Center for Energy Efficient Materials (CEEM)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silaindacenodithiophene-Based Molecular Donor: Morphological Features and Use in the Fabrication of Compositionally Tolerant, High-Efficiency Bulk Heterojunction Solar Cells</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-03-05</date><risdate>2014</risdate><volume>136</volume><issue>9</issue><spage>3597</spage><epage>3606</epage><pages>3597-3606</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>A novel solution-processable small molecule, namely, benzo[1,2-b:4,5-b]bis(4,4′-dihexyl-4H-silolo[3,2-b]thiophene-2,2′-diyl)bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole (p-SIDT(FBTTh2)2), was designed and synthesized by utilizing the silaindacenodithiophene (SIDT) framework as the central D2 donor unit within the D1AD2AD1 chromophore configuration. Relative to the widely studied 7,7′-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole] (p-DTS(FBTTh2)2), which contains the stronger donor fragment dithienosilole (DTS) as D2, one finds that p-SIDT(FBTTh2)2 exhibits a wider band gap and can be used to fabricate bulk heterojunction solar cells with higher open circuit voltage (0.91 V). Most remarkably, thin films comprising p-SIDT(FBTTh2)2 can achieve exceptional levels of self-organization directly via solution deposition. For example, high-resolution transmission electron microscopy analysis shows that p-SIDT(FBTTh2)2 spin-cast from chlorobenzene organizes into crystalline domains with lattice planes that extend over length scales on the order of hundreds of nanometers. Such features suggest liquid crystalline properties during the evolution of the film. Moreover, grazing incidence wide-angle X-ray scattering analysis shows a strong tendency for the molecules to exist with a strong “face-on” orientation relative to the substrate plane. Similar structural features, albeit of more restricted dimensions, can be observed within p-SIDT(FBTTh2)2:PC71BM bulk heterojunction thin films when the films are processed with 0.4% diiodooctane (DIO) solvent additive. DIO use also increases the solar cell power conversion efficiencies (PCEs) from 1.7% to 6.4%. Of significance from a practical device fabrication perspective is that, for p-SIDT(FBTTh2)2:PC71BM blends, there is a wide range of compositions (from 20:80 to 70:30 p-SIDT(FBTTh2)2:PC71BM) that provide good photovoltaic response, i.e., PCE = 4–6%, indicating a robust tendency to form the necessary continuous phases for charge carrier collection. Light intensity photocurrent measurements, charge selective diode fabrication, and internal quantum efficiency determinations were carried out to obtain insight into the mechanism of device operation. Inclusion of DIO in the casting solution results in films that exhibit much lower photocurrent dependence on voltage and a concomitant increase in fill factor. At the optimum blend ratio, devices show high charge carrier mobilities, while mismatched hole and electron mobilities in blends with high or low donor content result in reduced fill factors and device performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24559286</pmid><doi>10.1021/ja412473p</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2014-03, Vol.136 (9), p.3597-3606
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1504736311
source ACS Publications
subjects solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
title Silaindacenodithiophene-Based Molecular Donor: Morphological Features and Use in the Fabrication of Compositionally Tolerant, High-Efficiency Bulk Heterojunction Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silaindacenodithiophene-Based%20Molecular%20Donor:%20Morphological%20Features%20and%20Use%20in%20the%20Fabrication%20of%20Compositionally%20Tolerant,%20High-Efficiency%20Bulk%20Heterojunction%20Solar%20Cells&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Love,%20John%20A&rft.aucorp=Center%20for%20Energy%20Efficient%20Materials%20(CEEM)&rft.date=2014-03-05&rft.volume=136&rft.issue=9&rft.spage=3597&rft.epage=3606&rft.pages=3597-3606&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja412473p&rft_dat=%3Cproquest_osti_%3E1504736311%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504736311&rft_id=info:pmid/24559286&rfr_iscdi=true