CO2 isolated line shapes by classical molecular dynamics simulations: influence of the intermolecular potential and comparison with new measurements
Room temperature absorption spectra of various transitions of pure CO2 have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical mol...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-02, Vol.140 (8), p.084308-084308 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 084308 |
---|---|
container_issue | 8 |
container_start_page | 084308 |
container_title | The Journal of chemical physics |
container_volume | 140 |
creator | Larcher, G Tran, H Schwell, M Chelin, P Landsheere, X Hartmann, J-M Hu, S-M |
description | Room temperature absorption spectra of various transitions of pure CO2 have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO2 lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO2 transitions are almost independent of the rotational quantum number of the considered lines. |
doi_str_mv | 10.1063/1.4866449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1504458318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127730966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-819b041c4c612a0dc65f4580f7e32ec05494e81d79ad50f8d64738d0631acd283</originalsourceid><addsrcrecordid>eNpdkcuKFDEUhoMoTju68AUk4EYXNZ5cKlXlbmi8wcBsdF2kk1N0hlzKJMXQ7-EDm2FaBVcHfr7zn8tPyGsGVwyU-MCu5KiUlNMTsmMwTt2gJnhKdgCcdZMCdUFelHIHAGzg8jm54LIfRzbAjvza33LqSvK6oqXeRaTlqFcs9HCixutSnNGehuTRbF5nak9RB2cKLS40oboUy0fq4uI3jAZpWmg9YhMq5n9da6oYq2tOOlpqUlh1blMjvXf1SCPe04C6bBlDw8pL8mzRvuCrc70kPz5_-r7_2t3cfvm2v77pjGCidiObDiCZkUYxrsEa1S_tMFgGFBwN9HKSODI7TNr2sIxWyUGMtn2MaWP5KC7Ju0ffNaefG5Y6B1cMeq8jpq3MrAfZDAV7QN_-h96lLce23cwZHwYBk1KNev9ImZxKybjMa3ZB59PMYH6IambzOarGvjk7boeA9i_5JxvxG0aSj9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127730966</pqid></control><display><type>article</type><title>CO2 isolated line shapes by classical molecular dynamics simulations: influence of the intermolecular potential and comparison with new measurements</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Larcher, G ; Tran, H ; Schwell, M ; Chelin, P ; Landsheere, X ; Hartmann, J-M ; Hu, S-M</creator><creatorcontrib>Larcher, G ; Tran, H ; Schwell, M ; Chelin, P ; Landsheere, X ; Hartmann, J-M ; Hu, S-M</creatorcontrib><description>Room temperature absorption spectra of various transitions of pure CO2 have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO2 lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO2 transitions are almost independent of the rotational quantum number of the considered lines.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4866449</identifier><identifier>PMID: 24588170</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Absorption spectra ; Carbon dioxide ; Computer simulation ; Diodes ; Mathematical analysis ; Molecular dynamics ; Shape effects ; Time dependence ; Tunable lasers</subject><ispartof>The Journal of chemical physics, 2014-02, Vol.140 (8), p.084308-084308</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-819b041c4c612a0dc65f4580f7e32ec05494e81d79ad50f8d64738d0631acd283</citedby><cites>FETCH-LOGICAL-c313t-819b041c4c612a0dc65f4580f7e32ec05494e81d79ad50f8d64738d0631acd283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24588170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Larcher, G</creatorcontrib><creatorcontrib>Tran, H</creatorcontrib><creatorcontrib>Schwell, M</creatorcontrib><creatorcontrib>Chelin, P</creatorcontrib><creatorcontrib>Landsheere, X</creatorcontrib><creatorcontrib>Hartmann, J-M</creatorcontrib><creatorcontrib>Hu, S-M</creatorcontrib><title>CO2 isolated line shapes by classical molecular dynamics simulations: influence of the intermolecular potential and comparison with new measurements</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Room temperature absorption spectra of various transitions of pure CO2 have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO2 lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO2 transitions are almost independent of the rotational quantum number of the considered lines.</description><subject>Absorption spectra</subject><subject>Carbon dioxide</subject><subject>Computer simulation</subject><subject>Diodes</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Shape effects</subject><subject>Time dependence</subject><subject>Tunable lasers</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkcuKFDEUhoMoTju68AUk4EYXNZ5cKlXlbmi8wcBsdF2kk1N0hlzKJMXQ7-EDm2FaBVcHfr7zn8tPyGsGVwyU-MCu5KiUlNMTsmMwTt2gJnhKdgCcdZMCdUFelHIHAGzg8jm54LIfRzbAjvza33LqSvK6oqXeRaTlqFcs9HCixutSnNGehuTRbF5nak9RB2cKLS40oboUy0fq4uI3jAZpWmg9YhMq5n9da6oYq2tOOlpqUlh1blMjvXf1SCPe04C6bBlDw8pL8mzRvuCrc70kPz5_-r7_2t3cfvm2v77pjGCidiObDiCZkUYxrsEa1S_tMFgGFBwN9HKSODI7TNr2sIxWyUGMtn2MaWP5KC7Ju0ffNaefG5Y6B1cMeq8jpq3MrAfZDAV7QN_-h96lLce23cwZHwYBk1KNev9ImZxKybjMa3ZB59PMYH6IambzOarGvjk7boeA9i_5JxvxG0aSj9Y</recordid><startdate>20140228</startdate><enddate>20140228</enddate><creator>Larcher, G</creator><creator>Tran, H</creator><creator>Schwell, M</creator><creator>Chelin, P</creator><creator>Landsheere, X</creator><creator>Hartmann, J-M</creator><creator>Hu, S-M</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20140228</creationdate><title>CO2 isolated line shapes by classical molecular dynamics simulations: influence of the intermolecular potential and comparison with new measurements</title><author>Larcher, G ; Tran, H ; Schwell, M ; Chelin, P ; Landsheere, X ; Hartmann, J-M ; Hu, S-M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-819b041c4c612a0dc65f4580f7e32ec05494e81d79ad50f8d64738d0631acd283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absorption spectra</topic><topic>Carbon dioxide</topic><topic>Computer simulation</topic><topic>Diodes</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Shape effects</topic><topic>Time dependence</topic><topic>Tunable lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larcher, G</creatorcontrib><creatorcontrib>Tran, H</creatorcontrib><creatorcontrib>Schwell, M</creatorcontrib><creatorcontrib>Chelin, P</creatorcontrib><creatorcontrib>Landsheere, X</creatorcontrib><creatorcontrib>Hartmann, J-M</creatorcontrib><creatorcontrib>Hu, S-M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larcher, G</au><au>Tran, H</au><au>Schwell, M</au><au>Chelin, P</au><au>Landsheere, X</au><au>Hartmann, J-M</au><au>Hu, S-M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 isolated line shapes by classical molecular dynamics simulations: influence of the intermolecular potential and comparison with new measurements</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-02-28</date><risdate>2014</risdate><volume>140</volume><issue>8</issue><spage>084308</spage><epage>084308</epage><pages>084308-084308</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Room temperature absorption spectra of various transitions of pure CO2 have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO2 lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO2 transitions are almost independent of the rotational quantum number of the considered lines.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24588170</pmid><doi>10.1063/1.4866449</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2014-02, Vol.140 (8), p.084308-084308 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1504458318 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorption spectra Carbon dioxide Computer simulation Diodes Mathematical analysis Molecular dynamics Shape effects Time dependence Tunable lasers |
title | CO2 isolated line shapes by classical molecular dynamics simulations: influence of the intermolecular potential and comparison with new measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20isolated%20line%20shapes%20by%20classical%20molecular%20dynamics%20simulations:%20influence%20of%20the%20intermolecular%20potential%20and%20comparison%20with%20new%20measurements&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Larcher,%20G&rft.date=2014-02-28&rft.volume=140&rft.issue=8&rft.spage=084308&rft.epage=084308&rft.pages=084308-084308&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4866449&rft_dat=%3Cproquest_cross%3E2127730966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127730966&rft_id=info:pmid/24588170&rfr_iscdi=true |