Controlling unstable chaos: stabilizing chimera states by feedback

We present a control scheme that is able to find and stabilize an unstable chaotic regime in a system with a large number of interacting particles. This allows us to track a high dimensional chaotic attractor through a bifurcation where it loses its attractivity. Similar to classical delayed feedbac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-02, Vol.112 (5), p.054102-054102, Article 054102
Hauptverfasser: Sieber, Jan, Omel'chenko, Oleh E, Wolfrum, Matthias
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 054102
container_issue 5
container_start_page 054102
container_title Physical review letters
container_volume 112
creator Sieber, Jan
Omel'chenko, Oleh E
Wolfrum, Matthias
description We present a control scheme that is able to find and stabilize an unstable chaotic regime in a system with a large number of interacting particles. This allows us to track a high dimensional chaotic attractor through a bifurcation where it loses its attractivity. Similar to classical delayed feedback control, the scheme is noninvasive, however only in an appropriately relaxed sense considering the chaotic regime as a statistical equilibrium displaying random fluctuations as a finite size effect. We demonstrate the control scheme for so-called chimera states, which are coherence-incoherence patterns in coupled oscillator systems. The control makes chimera states observable close to coherence, for small numbers of oscillators, and for random initial conditions.
doi_str_mv 10.1103/physrevlett.112.054102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1504162745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1504162745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-920407df20ca224984e5ae243e9130460cc6514d75ab17333f9934546a50c5973</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwC1WWbFLGrzhmBxUvqRIIwTpynAkNOEmJk0rl63HUwmo0d-6dGR1C5hQWlAK_2qx3vsOtw74PAluAFBTYEZlSUDpWlIpjMgXgNNYAakLOvP8EAMqS9JRMmJApSK2m5HbZNn3XOlc1H9HQ-N7kDiO7Nq2_jsauctXPOLPrqsbOjFqPPsp3UYlY5MZ-nZOT0jiPF4c6I-_3d2_Lx3j1_PC0vFnFVqi0jzUDAaooGVjDmNCpQGmQCY6achAJWJtIKgolTU4V57zUmgspEiPBhl_5jFzu92669ntA32d15S06ZxpsB59RCYImTAkZrMnearvWB05ltumq2nS7jEI28steAr9X3K4CvyCwbM8vBOeHG0NeY_Ef-wPGfwHCaW3O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504162745</pqid></control><display><type>article</type><title>Controlling unstable chaos: stabilizing chimera states by feedback</title><source>American Physical Society Journals</source><creator>Sieber, Jan ; Omel'chenko, Oleh E ; Wolfrum, Matthias</creator><creatorcontrib>Sieber, Jan ; Omel'chenko, Oleh E ; Wolfrum, Matthias</creatorcontrib><description>We present a control scheme that is able to find and stabilize an unstable chaotic regime in a system with a large number of interacting particles. This allows us to track a high dimensional chaotic attractor through a bifurcation where it loses its attractivity. Similar to classical delayed feedback control, the scheme is noninvasive, however only in an appropriately relaxed sense considering the chaotic regime as a statistical equilibrium displaying random fluctuations as a finite size effect. We demonstrate the control scheme for so-called chimera states, which are coherence-incoherence patterns in coupled oscillator systems. The control makes chimera states observable close to coherence, for small numbers of oscillators, and for random initial conditions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.112.054102</identifier><identifier>PMID: 24580597</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2014-02, Vol.112 (5), p.054102-054102, Article 054102</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-920407df20ca224984e5ae243e9130460cc6514d75ab17333f9934546a50c5973</citedby><cites>FETCH-LOGICAL-c478t-920407df20ca224984e5ae243e9130460cc6514d75ab17333f9934546a50c5973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24580597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sieber, Jan</creatorcontrib><creatorcontrib>Omel'chenko, Oleh E</creatorcontrib><creatorcontrib>Wolfrum, Matthias</creatorcontrib><title>Controlling unstable chaos: stabilizing chimera states by feedback</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present a control scheme that is able to find and stabilize an unstable chaotic regime in a system with a large number of interacting particles. This allows us to track a high dimensional chaotic attractor through a bifurcation where it loses its attractivity. Similar to classical delayed feedback control, the scheme is noninvasive, however only in an appropriately relaxed sense considering the chaotic regime as a statistical equilibrium displaying random fluctuations as a finite size effect. We demonstrate the control scheme for so-called chimera states, which are coherence-incoherence patterns in coupled oscillator systems. The control makes chimera states observable close to coherence, for small numbers of oscillators, and for random initial conditions.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqXwC1WWbFLGrzhmBxUvqRIIwTpynAkNOEmJk0rl63HUwmo0d-6dGR1C5hQWlAK_2qx3vsOtw74PAluAFBTYEZlSUDpWlIpjMgXgNNYAakLOvP8EAMqS9JRMmJApSK2m5HbZNn3XOlc1H9HQ-N7kDiO7Nq2_jsauctXPOLPrqsbOjFqPPsp3UYlY5MZ-nZOT0jiPF4c6I-_3d2_Lx3j1_PC0vFnFVqi0jzUDAaooGVjDmNCpQGmQCY6achAJWJtIKgolTU4V57zUmgspEiPBhl_5jFzu92669ntA32d15S06ZxpsB59RCYImTAkZrMnearvWB05ltumq2nS7jEI28steAr9X3K4CvyCwbM8vBOeHG0NeY_Ef-wPGfwHCaW3O</recordid><startdate>20140205</startdate><enddate>20140205</enddate><creator>Sieber, Jan</creator><creator>Omel'chenko, Oleh E</creator><creator>Wolfrum, Matthias</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140205</creationdate><title>Controlling unstable chaos: stabilizing chimera states by feedback</title><author>Sieber, Jan ; Omel'chenko, Oleh E ; Wolfrum, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-920407df20ca224984e5ae243e9130460cc6514d75ab17333f9934546a50c5973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sieber, Jan</creatorcontrib><creatorcontrib>Omel'chenko, Oleh E</creatorcontrib><creatorcontrib>Wolfrum, Matthias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sieber, Jan</au><au>Omel'chenko, Oleh E</au><au>Wolfrum, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling unstable chaos: stabilizing chimera states by feedback</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-02-05</date><risdate>2014</risdate><volume>112</volume><issue>5</issue><spage>054102</spage><epage>054102</epage><pages>054102-054102</pages><artnum>054102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present a control scheme that is able to find and stabilize an unstable chaotic regime in a system with a large number of interacting particles. This allows us to track a high dimensional chaotic attractor through a bifurcation where it loses its attractivity. Similar to classical delayed feedback control, the scheme is noninvasive, however only in an appropriately relaxed sense considering the chaotic regime as a statistical equilibrium displaying random fluctuations as a finite size effect. We demonstrate the control scheme for so-called chimera states, which are coherence-incoherence patterns in coupled oscillator systems. The control makes chimera states observable close to coherence, for small numbers of oscillators, and for random initial conditions.</abstract><cop>United States</cop><pmid>24580597</pmid><doi>10.1103/physrevlett.112.054102</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2014-02, Vol.112 (5), p.054102-054102, Article 054102
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1504162745
source American Physical Society Journals
title Controlling unstable chaos: stabilizing chimera states by feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20unstable%20chaos:%20stabilizing%20chimera%20states%20by%20feedback&rft.jtitle=Physical%20review%20letters&rft.au=Sieber,%20Jan&rft.date=2014-02-05&rft.volume=112&rft.issue=5&rft.spage=054102&rft.epage=054102&rft.pages=054102-054102&rft.artnum=054102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.112.054102&rft_dat=%3Cproquest_cross%3E1504162745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504162745&rft_id=info:pmid/24580597&rfr_iscdi=true