Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
Bismuth vanadate (BiVO4) has a band structure that is well-suited for potential use as a photoanode in solar water splitting, but it suffers from poor electron-hole separation. Here, we demonstrate that a nanoporous morphology (specific surface area of 31.8 square meters per gram) effectively suppre...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2014-02, Vol.343 (6174), p.990-994 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 994 |
---|---|
container_issue | 6174 |
container_start_page | 990 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 343 |
creator | Kim, Tae Woo Choi, Kyoung-Shin |
description | Bismuth vanadate (BiVO4) has a band structure that is well-suited for potential use as a photoanode in solar water splitting, but it suffers from poor electron-hole separation. Here, we demonstrate that a nanoporous morphology (specific surface area of 31.8 square meters per gram) effectively suppresses bulk carrier recombination without additional doping, manifesting an electron-hole separation yield of 0.90 at 1.23 volts (V) versus the reversible hydrogen electrode (RHE). We enhanced the propensity for surface-reaching holes to instigate water-splitting chemistry by serially applying two different oxygen evolution catalyst (OEC) layers, FeOOH and NiOOH, which reduces interface recombination at the BiVO4/OEC junction while creating a more favorable Helmholtz layer potential drop at the OEC/electrolyte junction. The resulting BiVO4/FeOOH/NiOOH photoanode achieves a photocurrent density of 2.73 milliamps per square centimenter at a potential as low as 0.6 V versus RHE. |
doi_str_mv | 10.1126/science.1246913 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1503549652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1503549652</sourcerecordid><originalsourceid>FETCH-LOGICAL-g276t-1f20a28dd22bebca45389cf7476ed1c183492368f7a6aa9bf836ce3db80859de3</originalsourceid><addsrcrecordid>eNpd0DtPwzAQAGALgWgpzGzIEgtLwK849ggVL6miC7BGju20qdw4xA4l_x4LyoJuOOnu0-nuADjH6Bpjwm-Cbmyr7TUmjEtMD8AUI5lnkiB6CKYIUZ4JVOQTcBLCBqHUk_QYTAjLCaeYTIF6Ua3vfO-HAO-a9yWD3dpHn4rGBrhr4hqaQbnMqdH20H-NK9tC--ndEBvfQq2icmOIAda-h8E71cOdiomGzjUxNu3qFBzVygV7ts8z8PZw_zp_yhbLx-f57SJbkYLHDNcEKSKMIaSylVYsp0LqumAFtwZrLCiThHJRF4orJataUK4tNZVAIpfG0hm4-p3b9f5jsCGW2yZo65xqbbquxDmiOZM8J4le_qMbP_Rt2u5HpWCCJnWxV0O1tabs-mar-rH8ex79Bi8NcxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503030483</pqid></control><display><type>article</type><title>Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting</title><source>Science Magazine</source><source>JSTOR</source><creator>Kim, Tae Woo ; Choi, Kyoung-Shin</creator><creatorcontrib>Kim, Tae Woo ; Choi, Kyoung-Shin</creatorcontrib><description>Bismuth vanadate (BiVO4) has a band structure that is well-suited for potential use as a photoanode in solar water splitting, but it suffers from poor electron-hole separation. Here, we demonstrate that a nanoporous morphology (specific surface area of 31.8 square meters per gram) effectively suppresses bulk carrier recombination without additional doping, manifesting an electron-hole separation yield of 0.90 at 1.23 volts (V) versus the reversible hydrogen electrode (RHE). We enhanced the propensity for surface-reaching holes to instigate water-splitting chemistry by serially applying two different oxygen evolution catalyst (OEC) layers, FeOOH and NiOOH, which reduces interface recombination at the BiVO4/OEC junction while creating a more favorable Helmholtz layer potential drop at the OEC/electrolyte junction. The resulting BiVO4/FeOOH/NiOOH photoanode achieves a photocurrent density of 2.73 milliamps per square centimenter at a potential as low as 0.6 V versus RHE.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1246913</identifier><identifier>PMID: 24526312</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Catalysts ; Chemical compounds ; Chemical reactions ; Materials science ; Organic Chemistry ; Scientific Concepts ; Water</subject><ispartof>Science (American Association for the Advancement of Science), 2014-02, Vol.343 (6174), p.990-994</ispartof><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24526312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae Woo</creatorcontrib><creatorcontrib>Choi, Kyoung-Shin</creatorcontrib><title>Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Bismuth vanadate (BiVO4) has a band structure that is well-suited for potential use as a photoanode in solar water splitting, but it suffers from poor electron-hole separation. Here, we demonstrate that a nanoporous morphology (specific surface area of 31.8 square meters per gram) effectively suppresses bulk carrier recombination without additional doping, manifesting an electron-hole separation yield of 0.90 at 1.23 volts (V) versus the reversible hydrogen electrode (RHE). We enhanced the propensity for surface-reaching holes to instigate water-splitting chemistry by serially applying two different oxygen evolution catalyst (OEC) layers, FeOOH and NiOOH, which reduces interface recombination at the BiVO4/OEC junction while creating a more favorable Helmholtz layer potential drop at the OEC/electrolyte junction. The resulting BiVO4/FeOOH/NiOOH photoanode achieves a photocurrent density of 2.73 milliamps per square centimenter at a potential as low as 0.6 V versus RHE.</description><subject>Catalysts</subject><subject>Chemical compounds</subject><subject>Chemical reactions</subject><subject>Materials science</subject><subject>Organic Chemistry</subject><subject>Scientific Concepts</subject><subject>Water</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpd0DtPwzAQAGALgWgpzGzIEgtLwK849ggVL6miC7BGju20qdw4xA4l_x4LyoJuOOnu0-nuADjH6Bpjwm-Cbmyr7TUmjEtMD8AUI5lnkiB6CKYIUZ4JVOQTcBLCBqHUk_QYTAjLCaeYTIF6Ua3vfO-HAO-a9yWD3dpHn4rGBrhr4hqaQbnMqdH20H-NK9tC--ndEBvfQq2icmOIAda-h8E71cOdiomGzjUxNu3qFBzVygV7ts8z8PZw_zp_yhbLx-f57SJbkYLHDNcEKSKMIaSylVYsp0LqumAFtwZrLCiThHJRF4orJataUK4tNZVAIpfG0hm4-p3b9f5jsCGW2yZo65xqbbquxDmiOZM8J4le_qMbP_Rt2u5HpWCCJnWxV0O1tabs-mar-rH8ex79Bi8NcxE</recordid><startdate>20140228</startdate><enddate>20140228</enddate><creator>Kim, Tae Woo</creator><creator>Choi, Kyoung-Shin</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140228</creationdate><title>Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting</title><author>Kim, Tae Woo ; Choi, Kyoung-Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g276t-1f20a28dd22bebca45389cf7476ed1c183492368f7a6aa9bf836ce3db80859de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysts</topic><topic>Chemical compounds</topic><topic>Chemical reactions</topic><topic>Materials science</topic><topic>Organic Chemistry</topic><topic>Scientific Concepts</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae Woo</creatorcontrib><creatorcontrib>Choi, Kyoung-Shin</creatorcontrib><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae Woo</au><au>Choi, Kyoung-Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-02-28</date><risdate>2014</risdate><volume>343</volume><issue>6174</issue><spage>990</spage><epage>994</epage><pages>990-994</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Bismuth vanadate (BiVO4) has a band structure that is well-suited for potential use as a photoanode in solar water splitting, but it suffers from poor electron-hole separation. Here, we demonstrate that a nanoporous morphology (specific surface area of 31.8 square meters per gram) effectively suppresses bulk carrier recombination without additional doping, manifesting an electron-hole separation yield of 0.90 at 1.23 volts (V) versus the reversible hydrogen electrode (RHE). We enhanced the propensity for surface-reaching holes to instigate water-splitting chemistry by serially applying two different oxygen evolution catalyst (OEC) layers, FeOOH and NiOOH, which reduces interface recombination at the BiVO4/OEC junction while creating a more favorable Helmholtz layer potential drop at the OEC/electrolyte junction. The resulting BiVO4/FeOOH/NiOOH photoanode achieves a photocurrent density of 2.73 milliamps per square centimenter at a potential as low as 0.6 V versus RHE.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>24526312</pmid><doi>10.1126/science.1246913</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2014-02, Vol.343 (6174), p.990-994 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1503549652 |
source | Science Magazine; JSTOR |
subjects | Catalysts Chemical compounds Chemical reactions Materials science Organic Chemistry Scientific Concepts Water |
title | Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoporous%20BiVO4%20photoanodes%20with%20dual-layer%20oxygen%20evolution%20catalysts%20for%20solar%20water%20splitting&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kim,%20Tae%20Woo&rft.date=2014-02-28&rft.volume=343&rft.issue=6174&rft.spage=990&rft.epage=994&rft.pages=990-994&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1246913&rft_dat=%3Cproquest_pubme%3E1503549652%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503030483&rft_id=info:pmid/24526312&rfr_iscdi=true |