Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge

SUMMARYMechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in biomedical engineering 2013-12, Vol.29 (12), p.1323-1337
Hauptverfasser: de Oliveira, B. L., Rocha, B. M., Barra, L. P. S., Toledo, E. M., Sundnes, J., Weber dos Santos, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1337
container_issue 12
container_start_page 1323
container_title International journal for numerical methods in biomedical engineering
container_volume 29
creator de Oliveira, B. L.
Rocha, B. M.
Barra, L. P. S.
Toledo, E. M.
Sundnes, J.
Weber dos Santos, R.
description SUMMARYMechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve this purpose, we developed a strongly coupled electromechanical cell model by coupling a human left ventricle electrophysiology model and an active contraction model reparameterized for human cells. This model was then embedded in tissue simulations on the basis of bidomain equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate an increase in the T‐wave amplitude of the surface electrograms in simulations that account for the effects of cardiac deformation. This increased T‐wave amplitude can be explained by changes to the coupling between neighboring myocytes, also known as electrotonic effect. The thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural repolarization dispersion and T‐wave amplitude of surface electrograms. The simulations suggest that a considerable percentage of the T‐wave amplitude (15%) may be related to cardiac deformation. Copyright © 2013 John Wiley & Sons, Ltd. This paper presents a strongly coupled electromechanical cell model embedded in tissue simulations on the basis of bidomains equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate that the thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural dispersion of repolarization and T‐wave amplitude of computed surface electrograms.
doi_str_mv 10.1002/cnm.2570
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1503542354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3786405531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3870-619755e6e4baddbb24eb1b89fdf8479cc3c212772a93c40d765ba30cbfeddcd13</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoMottSCv0AC3ngzNR8zk82lLv0Q2vWm6mXIJCc1NZOsyUw__PVmu-sKgiEhB_Lk4XBehF5TckIJYe9NHE9YJ8gzdMhISxohW_F8X3N5gI5LuSV1MSml4C_RAeMV4pIcoodT58BMBSeHLbiURz35FHHdU9axjHPWAVtf1pDL04PDGdYp6Ox_bdG5-HiDfcTFB28SHpOF8CT8Po864gBuwncQp-zNXP_he7A38Aq9cDoUON7dR-jL2en18qK5_Hz-afnhsjF8IUjTUym6DnpoB23tMLAWBjospLNu0QppDDeMMiGYlty0xIq-GzQnZnBgrbGUH6F3W-86p58zlEmNvhgIQUdIc1G0I7xrWT0VffsPepvmHGt3igrSs80wyV-hyamUDE6tsx91flSUqE0gqgaiNoFU9M1OOA8j2D34Z_wVaLbAvQ_w-F-RWq6udsId78sED3te5x-qF1x06tvqXH29WJ0tr-i1-sh_A7aupYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706279390</pqid></control><display><type>article</type><title>Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>de Oliveira, B. L. ; Rocha, B. M. ; Barra, L. P. S. ; Toledo, E. M. ; Sundnes, J. ; Weber dos Santos, R.</creator><creatorcontrib>de Oliveira, B. L. ; Rocha, B. M. ; Barra, L. P. S. ; Toledo, E. M. ; Sundnes, J. ; Weber dos Santos, R.</creatorcontrib><description>SUMMARYMechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve this purpose, we developed a strongly coupled electromechanical cell model by coupling a human left ventricle electrophysiology model and an active contraction model reparameterized for human cells. This model was then embedded in tissue simulations on the basis of bidomain equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate an increase in the T‐wave amplitude of the surface electrograms in simulations that account for the effects of cardiac deformation. This increased T‐wave amplitude can be explained by changes to the coupling between neighboring myocytes, also known as electrotonic effect. The thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural repolarization dispersion and T‐wave amplitude of surface electrograms. The simulations suggest that a considerable percentage of the T‐wave amplitude (15%) may be related to cardiac deformation. Copyright © 2013 John Wiley &amp; Sons, Ltd. This paper presents a strongly coupled electromechanical cell model embedded in tissue simulations on the basis of bidomains equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate that the thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural dispersion of repolarization and T‐wave amplitude of computed surface electrograms.</description><identifier>ISSN: 2040-7939</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.2570</identifier><identifier>PMID: 23794390</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Action Potentials ; Computer Simulation ; Electrocardiography ; Heart Conduction System - physiology ; human electromechanical model ; Humans ; left ventricular wedge ; mechanoelectrical feedback ; Models, Cardiovascular ; T-wave ; transmural dispersion of repolarization ; Ventricular Function - physiology</subject><ispartof>International journal for numerical methods in biomedical engineering, 2013-12, Vol.29 (12), p.1323-1337</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3870-619755e6e4baddbb24eb1b89fdf8479cc3c212772a93c40d765ba30cbfeddcd13</citedby><cites>FETCH-LOGICAL-c3870-619755e6e4baddbb24eb1b89fdf8479cc3c212772a93c40d765ba30cbfeddcd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.2570$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.2570$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23794390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira, B. L.</creatorcontrib><creatorcontrib>Rocha, B. M.</creatorcontrib><creatorcontrib>Barra, L. P. S.</creatorcontrib><creatorcontrib>Toledo, E. M.</creatorcontrib><creatorcontrib>Sundnes, J.</creatorcontrib><creatorcontrib>Weber dos Santos, R.</creatorcontrib><title>Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><description>SUMMARYMechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve this purpose, we developed a strongly coupled electromechanical cell model by coupling a human left ventricle electrophysiology model and an active contraction model reparameterized for human cells. This model was then embedded in tissue simulations on the basis of bidomain equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate an increase in the T‐wave amplitude of the surface electrograms in simulations that account for the effects of cardiac deformation. This increased T‐wave amplitude can be explained by changes to the coupling between neighboring myocytes, also known as electrotonic effect. The thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural repolarization dispersion and T‐wave amplitude of surface electrograms. The simulations suggest that a considerable percentage of the T‐wave amplitude (15%) may be related to cardiac deformation. Copyright © 2013 John Wiley &amp; Sons, Ltd. This paper presents a strongly coupled electromechanical cell model embedded in tissue simulations on the basis of bidomains equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate that the thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural dispersion of repolarization and T‐wave amplitude of computed surface electrograms.</description><subject>Action Potentials</subject><subject>Computer Simulation</subject><subject>Electrocardiography</subject><subject>Heart Conduction System - physiology</subject><subject>human electromechanical model</subject><subject>Humans</subject><subject>left ventricular wedge</subject><subject>mechanoelectrical feedback</subject><subject>Models, Cardiovascular</subject><subject>T-wave</subject><subject>transmural dispersion of repolarization</subject><subject>Ventricular Function - physiology</subject><issn>2040-7939</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhoMottSCv0AC3ngzNR8zk82lLv0Q2vWm6mXIJCc1NZOsyUw__PVmu-sKgiEhB_Lk4XBehF5TckIJYe9NHE9YJ8gzdMhISxohW_F8X3N5gI5LuSV1MSml4C_RAeMV4pIcoodT58BMBSeHLbiURz35FHHdU9axjHPWAVtf1pDL04PDGdYp6Ox_bdG5-HiDfcTFB28SHpOF8CT8Po864gBuwncQp-zNXP_he7A38Aq9cDoUON7dR-jL2en18qK5_Hz-afnhsjF8IUjTUym6DnpoB23tMLAWBjospLNu0QppDDeMMiGYlty0xIq-GzQnZnBgrbGUH6F3W-86p58zlEmNvhgIQUdIc1G0I7xrWT0VffsPepvmHGt3igrSs80wyV-hyamUDE6tsx91flSUqE0gqgaiNoFU9M1OOA8j2D34Z_wVaLbAvQ_w-F-RWq6udsId78sED3te5x-qF1x06tvqXH29WJ0tr-i1-sh_A7aupYU</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>de Oliveira, B. L.</creator><creator>Rocha, B. M.</creator><creator>Barra, L. P. S.</creator><creator>Toledo, E. M.</creator><creator>Sundnes, J.</creator><creator>Weber dos Santos, R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201312</creationdate><title>Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge</title><author>de Oliveira, B. L. ; Rocha, B. M. ; Barra, L. P. S. ; Toledo, E. M. ; Sundnes, J. ; Weber dos Santos, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3870-619755e6e4baddbb24eb1b89fdf8479cc3c212772a93c40d765ba30cbfeddcd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials</topic><topic>Computer Simulation</topic><topic>Electrocardiography</topic><topic>Heart Conduction System - physiology</topic><topic>human electromechanical model</topic><topic>Humans</topic><topic>left ventricular wedge</topic><topic>mechanoelectrical feedback</topic><topic>Models, Cardiovascular</topic><topic>T-wave</topic><topic>transmural dispersion of repolarization</topic><topic>Ventricular Function - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, B. L.</creatorcontrib><creatorcontrib>Rocha, B. M.</creatorcontrib><creatorcontrib>Barra, L. P. S.</creatorcontrib><creatorcontrib>Toledo, E. M.</creatorcontrib><creatorcontrib>Sundnes, J.</creatorcontrib><creatorcontrib>Weber dos Santos, R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, B. L.</au><au>Rocha, B. M.</au><au>Barra, L. P. S.</au><au>Toledo, E. M.</au><au>Sundnes, J.</au><au>Weber dos Santos, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><date>2013-12</date><risdate>2013</risdate><volume>29</volume><issue>12</issue><spage>1323</spage><epage>1337</epage><pages>1323-1337</pages><issn>2040-7939</issn><eissn>2040-7947</eissn><abstract>SUMMARYMechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve this purpose, we developed a strongly coupled electromechanical cell model by coupling a human left ventricle electrophysiology model and an active contraction model reparameterized for human cells. This model was then embedded in tissue simulations on the basis of bidomain equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate an increase in the T‐wave amplitude of the surface electrograms in simulations that account for the effects of cardiac deformation. This increased T‐wave amplitude can be explained by changes to the coupling between neighboring myocytes, also known as electrotonic effect. The thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural repolarization dispersion and T‐wave amplitude of surface electrograms. The simulations suggest that a considerable percentage of the T‐wave amplitude (15%) may be related to cardiac deformation. Copyright © 2013 John Wiley &amp; Sons, Ltd. This paper presents a strongly coupled electromechanical cell model embedded in tissue simulations on the basis of bidomains equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate that the thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural dispersion of repolarization and T‐wave amplitude of computed surface electrograms.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23794390</pmid><doi>10.1002/cnm.2570</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-7939
ispartof International journal for numerical methods in biomedical engineering, 2013-12, Vol.29 (12), p.1323-1337
issn 2040-7939
2040-7947
language eng
recordid cdi_proquest_miscellaneous_1503542354
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Action Potentials
Computer Simulation
Electrocardiography
Heart Conduction System - physiology
human electromechanical model
Humans
left ventricular wedge
mechanoelectrical feedback
Models, Cardiovascular
T-wave
transmural dispersion of repolarization
Ventricular Function - physiology
title Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20deformation%20on%20transmural%20dispersion%20of%20repolarization%20using%20in%20silico%20models%20of%20human%20left%20ventricular%20wedge&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=de%20Oliveira,%20B.%20L.&rft.date=2013-12&rft.volume=29&rft.issue=12&rft.spage=1323&rft.epage=1337&rft.pages=1323-1337&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.2570&rft_dat=%3Cproquest_cross%3E3786405531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706279390&rft_id=info:pmid/23794390&rfr_iscdi=true