Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge
SUMMARYMechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve thi...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in biomedical engineering 2013-12, Vol.29 (12), p.1323-1337 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1337 |
---|---|
container_issue | 12 |
container_start_page | 1323 |
container_title | International journal for numerical methods in biomedical engineering |
container_volume | 29 |
creator | de Oliveira, B. L. Rocha, B. M. Barra, L. P. S. Toledo, E. M. Sundnes, J. Weber dos Santos, R. |
description | SUMMARYMechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve this purpose, we developed a strongly coupled electromechanical cell model by coupling a human left ventricle electrophysiology model and an active contraction model reparameterized for human cells. This model was then embedded in tissue simulations on the basis of bidomain equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate an increase in the T‐wave amplitude of the surface electrograms in simulations that account for the effects of cardiac deformation. This increased T‐wave amplitude can be explained by changes to the coupling between neighboring myocytes, also known as electrotonic effect. The thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural repolarization dispersion and T‐wave amplitude of surface electrograms. The simulations suggest that a considerable percentage of the T‐wave amplitude (15%) may be related to cardiac deformation. Copyright © 2013 John Wiley & Sons, Ltd.
This paper presents a strongly coupled electromechanical cell model embedded in tissue simulations on the basis of bidomains equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate that the thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural dispersion of repolarization and T‐wave amplitude of computed surface electrograms. |
doi_str_mv | 10.1002/cnm.2570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1503542354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3786405531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3870-619755e6e4baddbb24eb1b89fdf8479cc3c212772a93c40d765ba30cbfeddcd13</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoMottSCv0AC3ngzNR8zk82lLv0Q2vWm6mXIJCc1NZOsyUw__PVmu-sKgiEhB_Lk4XBehF5TckIJYe9NHE9YJ8gzdMhISxohW_F8X3N5gI5LuSV1MSml4C_RAeMV4pIcoodT58BMBSeHLbiURz35FHHdU9axjHPWAVtf1pDL04PDGdYp6Ox_bdG5-HiDfcTFB28SHpOF8CT8Po864gBuwncQp-zNXP_he7A38Aq9cDoUON7dR-jL2en18qK5_Hz-afnhsjF8IUjTUym6DnpoB23tMLAWBjospLNu0QppDDeMMiGYlty0xIq-GzQnZnBgrbGUH6F3W-86p58zlEmNvhgIQUdIc1G0I7xrWT0VffsPepvmHGt3igrSs80wyV-hyamUDE6tsx91flSUqE0gqgaiNoFU9M1OOA8j2D34Z_wVaLbAvQ_w-F-RWq6udsId78sED3te5x-qF1x06tvqXH29WJ0tr-i1-sh_A7aupYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706279390</pqid></control><display><type>article</type><title>Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>de Oliveira, B. L. ; Rocha, B. M. ; Barra, L. P. S. ; Toledo, E. M. ; Sundnes, J. ; Weber dos Santos, R.</creator><creatorcontrib>de Oliveira, B. L. ; Rocha, B. M. ; Barra, L. P. S. ; Toledo, E. M. ; Sundnes, J. ; Weber dos Santos, R.</creatorcontrib><description>SUMMARYMechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve this purpose, we developed a strongly coupled electromechanical cell model by coupling a human left ventricle electrophysiology model and an active contraction model reparameterized for human cells. This model was then embedded in tissue simulations on the basis of bidomain equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate an increase in the T‐wave amplitude of the surface electrograms in simulations that account for the effects of cardiac deformation. This increased T‐wave amplitude can be explained by changes to the coupling between neighboring myocytes, also known as electrotonic effect. The thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural repolarization dispersion and T‐wave amplitude of surface electrograms. The simulations suggest that a considerable percentage of the T‐wave amplitude (15%) may be related to cardiac deformation. Copyright © 2013 John Wiley & Sons, Ltd.
This paper presents a strongly coupled electromechanical cell model embedded in tissue simulations on the basis of bidomains equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate that the thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural dispersion of repolarization and T‐wave amplitude of computed surface electrograms.</description><identifier>ISSN: 2040-7939</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.2570</identifier><identifier>PMID: 23794390</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Action Potentials ; Computer Simulation ; Electrocardiography ; Heart Conduction System - physiology ; human electromechanical model ; Humans ; left ventricular wedge ; mechanoelectrical feedback ; Models, Cardiovascular ; T-wave ; transmural dispersion of repolarization ; Ventricular Function - physiology</subject><ispartof>International journal for numerical methods in biomedical engineering, 2013-12, Vol.29 (12), p.1323-1337</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3870-619755e6e4baddbb24eb1b89fdf8479cc3c212772a93c40d765ba30cbfeddcd13</citedby><cites>FETCH-LOGICAL-c3870-619755e6e4baddbb24eb1b89fdf8479cc3c212772a93c40d765ba30cbfeddcd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.2570$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.2570$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23794390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira, B. L.</creatorcontrib><creatorcontrib>Rocha, B. M.</creatorcontrib><creatorcontrib>Barra, L. P. S.</creatorcontrib><creatorcontrib>Toledo, E. M.</creatorcontrib><creatorcontrib>Sundnes, J.</creatorcontrib><creatorcontrib>Weber dos Santos, R.</creatorcontrib><title>Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><description>SUMMARYMechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve this purpose, we developed a strongly coupled electromechanical cell model by coupling a human left ventricle electrophysiology model and an active contraction model reparameterized for human cells. This model was then embedded in tissue simulations on the basis of bidomain equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate an increase in the T‐wave amplitude of the surface electrograms in simulations that account for the effects of cardiac deformation. This increased T‐wave amplitude can be explained by changes to the coupling between neighboring myocytes, also known as electrotonic effect. The thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural repolarization dispersion and T‐wave amplitude of surface electrograms. The simulations suggest that a considerable percentage of the T‐wave amplitude (15%) may be related to cardiac deformation. Copyright © 2013 John Wiley & Sons, Ltd.
This paper presents a strongly coupled electromechanical cell model embedded in tissue simulations on the basis of bidomains equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate that the thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural dispersion of repolarization and T‐wave amplitude of computed surface electrograms.</description><subject>Action Potentials</subject><subject>Computer Simulation</subject><subject>Electrocardiography</subject><subject>Heart Conduction System - physiology</subject><subject>human electromechanical model</subject><subject>Humans</subject><subject>left ventricular wedge</subject><subject>mechanoelectrical feedback</subject><subject>Models, Cardiovascular</subject><subject>T-wave</subject><subject>transmural dispersion of repolarization</subject><subject>Ventricular Function - physiology</subject><issn>2040-7939</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhoMottSCv0AC3ngzNR8zk82lLv0Q2vWm6mXIJCc1NZOsyUw__PVmu-sKgiEhB_Lk4XBehF5TckIJYe9NHE9YJ8gzdMhISxohW_F8X3N5gI5LuSV1MSml4C_RAeMV4pIcoodT58BMBSeHLbiURz35FHHdU9axjHPWAVtf1pDL04PDGdYp6Ox_bdG5-HiDfcTFB28SHpOF8CT8Po864gBuwncQp-zNXP_he7A38Aq9cDoUON7dR-jL2en18qK5_Hz-afnhsjF8IUjTUym6DnpoB23tMLAWBjospLNu0QppDDeMMiGYlty0xIq-GzQnZnBgrbGUH6F3W-86p58zlEmNvhgIQUdIc1G0I7xrWT0VffsPepvmHGt3igrSs80wyV-hyamUDE6tsx91flSUqE0gqgaiNoFU9M1OOA8j2D34Z_wVaLbAvQ_w-F-RWq6udsId78sED3te5x-qF1x06tvqXH29WJ0tr-i1-sh_A7aupYU</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>de Oliveira, B. L.</creator><creator>Rocha, B. M.</creator><creator>Barra, L. P. S.</creator><creator>Toledo, E. M.</creator><creator>Sundnes, J.</creator><creator>Weber dos Santos, R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201312</creationdate><title>Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge</title><author>de Oliveira, B. L. ; Rocha, B. M. ; Barra, L. P. S. ; Toledo, E. M. ; Sundnes, J. ; Weber dos Santos, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3870-619755e6e4baddbb24eb1b89fdf8479cc3c212772a93c40d765ba30cbfeddcd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials</topic><topic>Computer Simulation</topic><topic>Electrocardiography</topic><topic>Heart Conduction System - physiology</topic><topic>human electromechanical model</topic><topic>Humans</topic><topic>left ventricular wedge</topic><topic>mechanoelectrical feedback</topic><topic>Models, Cardiovascular</topic><topic>T-wave</topic><topic>transmural dispersion of repolarization</topic><topic>Ventricular Function - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, B. L.</creatorcontrib><creatorcontrib>Rocha, B. M.</creatorcontrib><creatorcontrib>Barra, L. P. S.</creatorcontrib><creatorcontrib>Toledo, E. M.</creatorcontrib><creatorcontrib>Sundnes, J.</creatorcontrib><creatorcontrib>Weber dos Santos, R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, B. L.</au><au>Rocha, B. M.</au><au>Barra, L. P. S.</au><au>Toledo, E. M.</au><au>Sundnes, J.</au><au>Weber dos Santos, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><date>2013-12</date><risdate>2013</risdate><volume>29</volume><issue>12</issue><spage>1323</spage><epage>1337</epage><pages>1323-1337</pages><issn>2040-7939</issn><eissn>2040-7947</eissn><abstract>SUMMARYMechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve this purpose, we developed a strongly coupled electromechanical cell model by coupling a human left ventricle electrophysiology model and an active contraction model reparameterized for human cells. This model was then embedded in tissue simulations on the basis of bidomain equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate an increase in the T‐wave amplitude of the surface electrograms in simulations that account for the effects of cardiac deformation. This increased T‐wave amplitude can be explained by changes to the coupling between neighboring myocytes, also known as electrotonic effect. The thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural repolarization dispersion and T‐wave amplitude of surface electrograms. The simulations suggest that a considerable percentage of the T‐wave amplitude (15%) may be related to cardiac deformation. Copyright © 2013 John Wiley & Sons, Ltd.
This paper presents a strongly coupled electromechanical cell model embedded in tissue simulations on the basis of bidomains equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate that the thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural dispersion of repolarization and T‐wave amplitude of computed surface electrograms.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23794390</pmid><doi>10.1002/cnm.2570</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-7939 |
ispartof | International journal for numerical methods in biomedical engineering, 2013-12, Vol.29 (12), p.1323-1337 |
issn | 2040-7939 2040-7947 |
language | eng |
recordid | cdi_proquest_miscellaneous_1503542354 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Action Potentials Computer Simulation Electrocardiography Heart Conduction System - physiology human electromechanical model Humans left ventricular wedge mechanoelectrical feedback Models, Cardiovascular T-wave transmural dispersion of repolarization Ventricular Function - physiology |
title | Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20deformation%20on%20transmural%20dispersion%20of%20repolarization%20using%20in%20silico%20models%20of%20human%20left%20ventricular%20wedge&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=de%20Oliveira,%20B.%20L.&rft.date=2013-12&rft.volume=29&rft.issue=12&rft.spage=1323&rft.epage=1337&rft.pages=1323-1337&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.2570&rft_dat=%3Cproquest_cross%3E3786405531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706279390&rft_id=info:pmid/23794390&rfr_iscdi=true |