Allosteric Regulation of Epoxide Opening Cascades by a Pair of Epoxide Hydrolases in Monensin Biosynthesis

Multistep catalysis of epoxide hydrolase/cyclase in the epoxide opening cascade is an intriguing issue in polyether biosynthesis. A pair of structurally homologous epoxide hydrolases was found in gene clusters of ionophore polyethers. In the epoxide opening reactions with MonBI and MonBII involved i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2014-02, Vol.9 (2), p.562-569
Hauptverfasser: Minami, Atsushi, Ose, Toyoyuki, Sato, Kyohei, Oikawa, Azusa, Kuroki, Kimiko, Maenaka, Katsumi, Oguri, Hiroki, Oikawa, Hideaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 2
container_start_page 562
container_title ACS chemical biology
container_volume 9
creator Minami, Atsushi
Ose, Toyoyuki
Sato, Kyohei
Oikawa, Azusa
Kuroki, Kimiko
Maenaka, Katsumi
Oguri, Hiroki
Oikawa, Hideaki
description Multistep catalysis of epoxide hydrolase/cyclase in the epoxide opening cascade is an intriguing issue in polyether biosynthesis. A pair of structurally homologous epoxide hydrolases was found in gene clusters of ionophore polyethers. In the epoxide opening reactions with MonBI and MonBII involved in monensin biosynthesis, we found that MonBII and catalytically inactive MonBI mutant catalyzed two-step reactions of bisepoxide substrate analogue to afford bicyclic product although MonBII alone catalyzed only the first cyclization. The X-ray crystal structure of MonBI dimers suggested the importance of the KSD motif in MonBI/MonBI interaction, which was further supported by gel filtration chromatography of wild-type MonBI and mutant MonBI. The involvement of the KSD motif in heterodimer formation was confirmed by in vitro assay. Direct evidence of MonBI/MonBII interaction was obtained by native mass spectrometry. Its dissociation constant was determined as 2.21 × 10–5 M by surface plasmon resonance. Our results suggested the involvement of an allosteric regulation mechanism by MonBI/MonBII interaction in monensin skeletal construction.
doi_str_mv 10.1021/cb4006485
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1501370315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1501370315</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-d6879701f9824de768c2f1b6bbb21ee422a72c051a046dab5cc471a96a1322833</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotn4c_AOSi6CH1SSb7MexlmqFSkX0vCTZbE3ZJmtmF9x_70pr8eBpXphnXpgHoQtKbilh9E4rTkjCM3GAxlQIHmV5nB7uM8tH6ARgTQiPkyw_RiPGYzYcijFaT-raQ2uC1fjVrLpattY77Cs8a_yXLQ1eNsZZt8JTCVqWBrDqscQv0oa_1Lwvg68lDHvr8LN3xsEQ7q2H3rUfBiycoaNK1mDOd_MUvT_M3qbzaLF8fJpOFpHkTLRRmWRpnhJa5RnjpUmTTLOKqkQpxagxnDGZMk0ElYQnpVRCa55SmSeSxoxlcXyKrre9TfCfnYG22FjQpq6lM76DggpC45TEVAzozRbVwQMEUxVNsBsZ-oKS4kdtsVc7sJe72k5tTLknf10OwNUWkBqKte-CG778p-gbPw1-6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501370315</pqid></control><display><type>article</type><title>Allosteric Regulation of Epoxide Opening Cascades by a Pair of Epoxide Hydrolases in Monensin Biosynthesis</title><source>MEDLINE</source><source>ACS Publications</source><creator>Minami, Atsushi ; Ose, Toyoyuki ; Sato, Kyohei ; Oikawa, Azusa ; Kuroki, Kimiko ; Maenaka, Katsumi ; Oguri, Hiroki ; Oikawa, Hideaki</creator><creatorcontrib>Minami, Atsushi ; Ose, Toyoyuki ; Sato, Kyohei ; Oikawa, Azusa ; Kuroki, Kimiko ; Maenaka, Katsumi ; Oguri, Hiroki ; Oikawa, Hideaki</creatorcontrib><description>Multistep catalysis of epoxide hydrolase/cyclase in the epoxide opening cascade is an intriguing issue in polyether biosynthesis. A pair of structurally homologous epoxide hydrolases was found in gene clusters of ionophore polyethers. In the epoxide opening reactions with MonBI and MonBII involved in monensin biosynthesis, we found that MonBII and catalytically inactive MonBI mutant catalyzed two-step reactions of bisepoxide substrate analogue to afford bicyclic product although MonBII alone catalyzed only the first cyclization. The X-ray crystal structure of MonBI dimers suggested the importance of the KSD motif in MonBI/MonBI interaction, which was further supported by gel filtration chromatography of wild-type MonBI and mutant MonBI. The involvement of the KSD motif in heterodimer formation was confirmed by in vitro assay. Direct evidence of MonBI/MonBII interaction was obtained by native mass spectrometry. Its dissociation constant was determined as 2.21 × 10–5 M by surface plasmon resonance. Our results suggested the involvement of an allosteric regulation mechanism by MonBI/MonBII interaction in monensin skeletal construction.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/cb4006485</identifier><identifier>PMID: 24320215</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Allosteric Regulation ; Crystallography, X-Ray ; Epoxide Hydrolases - chemistry ; Epoxide Hydrolases - genetics ; Epoxide Hydrolases - metabolism ; Models, Molecular ; Monensin - chemistry ; Monensin - metabolism ; Mutation ; Protein Conformation ; Protein Multimerization ; Streptomyces - chemistry ; Streptomyces - enzymology ; Streptomyces - genetics ; Streptomyces - metabolism</subject><ispartof>ACS chemical biology, 2014-02, Vol.9 (2), p.562-569</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-d6879701f9824de768c2f1b6bbb21ee422a72c051a046dab5cc471a96a1322833</citedby><cites>FETCH-LOGICAL-a425t-d6879701f9824de768c2f1b6bbb21ee422a72c051a046dab5cc471a96a1322833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cb4006485$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cb4006485$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24320215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Minami, Atsushi</creatorcontrib><creatorcontrib>Ose, Toyoyuki</creatorcontrib><creatorcontrib>Sato, Kyohei</creatorcontrib><creatorcontrib>Oikawa, Azusa</creatorcontrib><creatorcontrib>Kuroki, Kimiko</creatorcontrib><creatorcontrib>Maenaka, Katsumi</creatorcontrib><creatorcontrib>Oguri, Hiroki</creatorcontrib><creatorcontrib>Oikawa, Hideaki</creatorcontrib><title>Allosteric Regulation of Epoxide Opening Cascades by a Pair of Epoxide Hydrolases in Monensin Biosynthesis</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>Multistep catalysis of epoxide hydrolase/cyclase in the epoxide opening cascade is an intriguing issue in polyether biosynthesis. A pair of structurally homologous epoxide hydrolases was found in gene clusters of ionophore polyethers. In the epoxide opening reactions with MonBI and MonBII involved in monensin biosynthesis, we found that MonBII and catalytically inactive MonBI mutant catalyzed two-step reactions of bisepoxide substrate analogue to afford bicyclic product although MonBII alone catalyzed only the first cyclization. The X-ray crystal structure of MonBI dimers suggested the importance of the KSD motif in MonBI/MonBI interaction, which was further supported by gel filtration chromatography of wild-type MonBI and mutant MonBI. The involvement of the KSD motif in heterodimer formation was confirmed by in vitro assay. Direct evidence of MonBI/MonBII interaction was obtained by native mass spectrometry. Its dissociation constant was determined as 2.21 × 10–5 M by surface plasmon resonance. Our results suggested the involvement of an allosteric regulation mechanism by MonBI/MonBII interaction in monensin skeletal construction.</description><subject>Allosteric Regulation</subject><subject>Crystallography, X-Ray</subject><subject>Epoxide Hydrolases - chemistry</subject><subject>Epoxide Hydrolases - genetics</subject><subject>Epoxide Hydrolases - metabolism</subject><subject>Models, Molecular</subject><subject>Monensin - chemistry</subject><subject>Monensin - metabolism</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Streptomyces - chemistry</subject><subject>Streptomyces - enzymology</subject><subject>Streptomyces - genetics</subject><subject>Streptomyces - metabolism</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMotn4c_AOSi6CH1SSb7MexlmqFSkX0vCTZbE3ZJmtmF9x_70pr8eBpXphnXpgHoQtKbilh9E4rTkjCM3GAxlQIHmV5nB7uM8tH6ARgTQiPkyw_RiPGYzYcijFaT-raQ2uC1fjVrLpattY77Cs8a_yXLQ1eNsZZt8JTCVqWBrDqscQv0oa_1Lwvg68lDHvr8LN3xsEQ7q2H3rUfBiycoaNK1mDOd_MUvT_M3qbzaLF8fJpOFpHkTLRRmWRpnhJa5RnjpUmTTLOKqkQpxagxnDGZMk0ElYQnpVRCa55SmSeSxoxlcXyKrre9TfCfnYG22FjQpq6lM76DggpC45TEVAzozRbVwQMEUxVNsBsZ-oKS4kdtsVc7sJe72k5tTLknf10OwNUWkBqKte-CG778p-gbPw1-6A</recordid><startdate>20140221</startdate><enddate>20140221</enddate><creator>Minami, Atsushi</creator><creator>Ose, Toyoyuki</creator><creator>Sato, Kyohei</creator><creator>Oikawa, Azusa</creator><creator>Kuroki, Kimiko</creator><creator>Maenaka, Katsumi</creator><creator>Oguri, Hiroki</creator><creator>Oikawa, Hideaki</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140221</creationdate><title>Allosteric Regulation of Epoxide Opening Cascades by a Pair of Epoxide Hydrolases in Monensin Biosynthesis</title><author>Minami, Atsushi ; Ose, Toyoyuki ; Sato, Kyohei ; Oikawa, Azusa ; Kuroki, Kimiko ; Maenaka, Katsumi ; Oguri, Hiroki ; Oikawa, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-d6879701f9824de768c2f1b6bbb21ee422a72c051a046dab5cc471a96a1322833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Allosteric Regulation</topic><topic>Crystallography, X-Ray</topic><topic>Epoxide Hydrolases - chemistry</topic><topic>Epoxide Hydrolases - genetics</topic><topic>Epoxide Hydrolases - metabolism</topic><topic>Models, Molecular</topic><topic>Monensin - chemistry</topic><topic>Monensin - metabolism</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Streptomyces - chemistry</topic><topic>Streptomyces - enzymology</topic><topic>Streptomyces - genetics</topic><topic>Streptomyces - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minami, Atsushi</creatorcontrib><creatorcontrib>Ose, Toyoyuki</creatorcontrib><creatorcontrib>Sato, Kyohei</creatorcontrib><creatorcontrib>Oikawa, Azusa</creatorcontrib><creatorcontrib>Kuroki, Kimiko</creatorcontrib><creatorcontrib>Maenaka, Katsumi</creatorcontrib><creatorcontrib>Oguri, Hiroki</creatorcontrib><creatorcontrib>Oikawa, Hideaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minami, Atsushi</au><au>Ose, Toyoyuki</au><au>Sato, Kyohei</au><au>Oikawa, Azusa</au><au>Kuroki, Kimiko</au><au>Maenaka, Katsumi</au><au>Oguri, Hiroki</au><au>Oikawa, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allosteric Regulation of Epoxide Opening Cascades by a Pair of Epoxide Hydrolases in Monensin Biosynthesis</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2014-02-21</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>562</spage><epage>569</epage><pages>562-569</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>Multistep catalysis of epoxide hydrolase/cyclase in the epoxide opening cascade is an intriguing issue in polyether biosynthesis. A pair of structurally homologous epoxide hydrolases was found in gene clusters of ionophore polyethers. In the epoxide opening reactions with MonBI and MonBII involved in monensin biosynthesis, we found that MonBII and catalytically inactive MonBI mutant catalyzed two-step reactions of bisepoxide substrate analogue to afford bicyclic product although MonBII alone catalyzed only the first cyclization. The X-ray crystal structure of MonBI dimers suggested the importance of the KSD motif in MonBI/MonBI interaction, which was further supported by gel filtration chromatography of wild-type MonBI and mutant MonBI. The involvement of the KSD motif in heterodimer formation was confirmed by in vitro assay. Direct evidence of MonBI/MonBII interaction was obtained by native mass spectrometry. Its dissociation constant was determined as 2.21 × 10–5 M by surface plasmon resonance. Our results suggested the involvement of an allosteric regulation mechanism by MonBI/MonBII interaction in monensin skeletal construction.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24320215</pmid><doi>10.1021/cb4006485</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2014-02, Vol.9 (2), p.562-569
issn 1554-8929
1554-8937
language eng
recordid cdi_proquest_miscellaneous_1501370315
source MEDLINE; ACS Publications
subjects Allosteric Regulation
Crystallography, X-Ray
Epoxide Hydrolases - chemistry
Epoxide Hydrolases - genetics
Epoxide Hydrolases - metabolism
Models, Molecular
Monensin - chemistry
Monensin - metabolism
Mutation
Protein Conformation
Protein Multimerization
Streptomyces - chemistry
Streptomyces - enzymology
Streptomyces - genetics
Streptomyces - metabolism
title Allosteric Regulation of Epoxide Opening Cascades by a Pair of Epoxide Hydrolases in Monensin Biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allosteric%20Regulation%20of%20Epoxide%20Opening%20Cascades%20by%20a%20Pair%20of%20Epoxide%20Hydrolases%20in%20Monensin%20Biosynthesis&rft.jtitle=ACS%20chemical%20biology&rft.au=Minami,%20Atsushi&rft.date=2014-02-21&rft.volume=9&rft.issue=2&rft.spage=562&rft.epage=569&rft.pages=562-569&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/cb4006485&rft_dat=%3Cproquest_cross%3E1501370315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501370315&rft_id=info:pmid/24320215&rfr_iscdi=true