Artificial neural network models for biomass gasification in fluidized bed gasifiers

Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomass & bioenergy 2013-02, Vol.49, p.279-289
Hauptverfasser: Puig-Arnavat, Maria, Hernández, J. Alfredo, Bruno, Joan Carles, Coronas, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue
container_start_page 279
container_title Biomass & bioenergy
container_volume 49
creator Puig-Arnavat, Maria
Hernández, J. Alfredo
Bruno, Joan Carles
Coronas, Alberto
description Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine the producer gas composition (CO, CO2, H2, CH4) and gas yield. Published experimental data from other authors has been used to train the ANNs. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published experimental data used R2 > 0.98. Furthermore a sensitivity analysis has been applied in each ANN model showing that all studied input variables are important. ► We developed two ANN models for fluidized bed biomass gasification process. ► Input variables are biomass composition and a couple of operating parameters. ► Producer gas composition and yield can be determined by an ANN model. ► All input variables have a strong influence in predicting the model outputs.
doi_str_mv 10.1016/j.biombioe.2012.12.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500801189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0961953412005107</els_id><sourcerecordid>1323820122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-31fb72b06df210fc45fc078160b31705dcbae6ad9ceaf2632691fc6bf2a71d7a3</originalsourceid><addsrcrecordid>eNqFkUtP3TAQha2KSr3Q_oWSTSU2uczYiZPsQKg8JKQuCmtr4gfyJTcGOxcEv74OoWyRZnQW_s7M6JixnwhrBJTHm3Xvwza3XXNAvs6V5QtbYduIknfQ7bEVdBLLrhbVN7af0gYAK6hwxW5O4-Sd156GYrS7-CbTc4j3xTYYO6TChVjMCyil4o7SDNPkw1j4sXDDzhv_ak3R515ebUzf2VdHQ7I_3vWA3Z7_vjm7LK__XFydnV6XuhJ8KgW6vuE9SOM4gtNV7TQ0LUroBTZQG92TlWQ6bclxKbjs0GnZO04NmobEATta5j7E8LizaVJbn7QdBhpt2CWFNUALiG33OSq4aOf4eEblguoYUorWqYfotxRfFIKaE1cb9T9xNVtUrizZ-Ot9ByVNg4s0ap8-3LxBiR2HzB0unKOg6C5m5vZvHpSvxbrmYiZOFiJ_gH3KkaqkvR21NT5aPSkT_GfH_APKkKPi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323820122</pqid></control><display><type>article</type><title>Artificial neural network models for biomass gasification in fluidized bed gasifiers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Puig-Arnavat, Maria ; Hernández, J. Alfredo ; Bruno, Joan Carles ; Coronas, Alberto</creator><creatorcontrib>Puig-Arnavat, Maria ; Hernández, J. Alfredo ; Bruno, Joan Carles ; Coronas, Alberto</creatorcontrib><description>Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine the producer gas composition (CO, CO2, H2, CH4) and gas yield. Published experimental data from other authors has been used to train the ANNs. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published experimental data used R2 &gt; 0.98. Furthermore a sensitivity analysis has been applied in each ANN model showing that all studied input variables are important. ► We developed two ANN models for fluidized bed biomass gasification process. ► Input variables are biomass composition and a couple of operating parameters. ► Producer gas composition and yield can be determined by an ANN model. ► All input variables have a strong influence in predicting the model outputs.</description><identifier>ISSN: 0961-9534</identifier><identifier>EISSN: 1873-2909</identifier><identifier>DOI: 10.1016/j.biombioe.2012.12.012</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial neural network ; bioenergy ; Biomass ; carbon dioxide ; Energy ; Exact sciences and technology ; Fluidized bed ; fluidized beds ; Fuel processing. Carbochemistry and petrochemistry ; Fuels ; Gasification ; hydrogen ; methane ; neural networks ; neurons ; Simulation ; Solid fuel processing (coal, coke, brown coal, peat, wood, etc.)</subject><ispartof>Biomass &amp; bioenergy, 2013-02, Vol.49, p.279-289</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-31fb72b06df210fc45fc078160b31705dcbae6ad9ceaf2632691fc6bf2a71d7a3</citedby><cites>FETCH-LOGICAL-c432t-31fb72b06df210fc45fc078160b31705dcbae6ad9ceaf2632691fc6bf2a71d7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biombioe.2012.12.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27161920$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Puig-Arnavat, Maria</creatorcontrib><creatorcontrib>Hernández, J. Alfredo</creatorcontrib><creatorcontrib>Bruno, Joan Carles</creatorcontrib><creatorcontrib>Coronas, Alberto</creatorcontrib><title>Artificial neural network models for biomass gasification in fluidized bed gasifiers</title><title>Biomass &amp; bioenergy</title><description>Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine the producer gas composition (CO, CO2, H2, CH4) and gas yield. Published experimental data from other authors has been used to train the ANNs. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published experimental data used R2 &gt; 0.98. Furthermore a sensitivity analysis has been applied in each ANN model showing that all studied input variables are important. ► We developed two ANN models for fluidized bed biomass gasification process. ► Input variables are biomass composition and a couple of operating parameters. ► Producer gas composition and yield can be determined by an ANN model. ► All input variables have a strong influence in predicting the model outputs.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial neural network</subject><subject>bioenergy</subject><subject>Biomass</subject><subject>carbon dioxide</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fluidized bed</subject><subject>fluidized beds</subject><subject>Fuel processing. Carbochemistry and petrochemistry</subject><subject>Fuels</subject><subject>Gasification</subject><subject>hydrogen</subject><subject>methane</subject><subject>neural networks</subject><subject>neurons</subject><subject>Simulation</subject><subject>Solid fuel processing (coal, coke, brown coal, peat, wood, etc.)</subject><issn>0961-9534</issn><issn>1873-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP3TAQha2KSr3Q_oWSTSU2uczYiZPsQKg8JKQuCmtr4gfyJTcGOxcEv74OoWyRZnQW_s7M6JixnwhrBJTHm3Xvwza3XXNAvs6V5QtbYduIknfQ7bEVdBLLrhbVN7af0gYAK6hwxW5O4-Sd156GYrS7-CbTc4j3xTYYO6TChVjMCyil4o7SDNPkw1j4sXDDzhv_ak3R515ebUzf2VdHQ7I_3vWA3Z7_vjm7LK__XFydnV6XuhJ8KgW6vuE9SOM4gtNV7TQ0LUroBTZQG92TlWQ6bclxKbjs0GnZO04NmobEATta5j7E8LizaVJbn7QdBhpt2CWFNUALiG33OSq4aOf4eEblguoYUorWqYfotxRfFIKaE1cb9T9xNVtUrizZ-Ot9ByVNg4s0ap8-3LxBiR2HzB0unKOg6C5m5vZvHpSvxbrmYiZOFiJ_gH3KkaqkvR21NT5aPSkT_GfH_APKkKPi</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Puig-Arnavat, Maria</creator><creator>Hernández, J. Alfredo</creator><creator>Bruno, Joan Carles</creator><creator>Coronas, Alberto</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130201</creationdate><title>Artificial neural network models for biomass gasification in fluidized bed gasifiers</title><author>Puig-Arnavat, Maria ; Hernández, J. Alfredo ; Bruno, Joan Carles ; Coronas, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-31fb72b06df210fc45fc078160b31705dcbae6ad9ceaf2632691fc6bf2a71d7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial neural network</topic><topic>bioenergy</topic><topic>Biomass</topic><topic>carbon dioxide</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fluidized bed</topic><topic>fluidized beds</topic><topic>Fuel processing. Carbochemistry and petrochemistry</topic><topic>Fuels</topic><topic>Gasification</topic><topic>hydrogen</topic><topic>methane</topic><topic>neural networks</topic><topic>neurons</topic><topic>Simulation</topic><topic>Solid fuel processing (coal, coke, brown coal, peat, wood, etc.)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puig-Arnavat, Maria</creatorcontrib><creatorcontrib>Hernández, J. Alfredo</creatorcontrib><creatorcontrib>Bruno, Joan Carles</creatorcontrib><creatorcontrib>Coronas, Alberto</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomass &amp; bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puig-Arnavat, Maria</au><au>Hernández, J. Alfredo</au><au>Bruno, Joan Carles</au><au>Coronas, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network models for biomass gasification in fluidized bed gasifiers</atitle><jtitle>Biomass &amp; bioenergy</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>49</volume><spage>279</spage><epage>289</epage><pages>279-289</pages><issn>0961-9534</issn><eissn>1873-2909</eissn><abstract>Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine the producer gas composition (CO, CO2, H2, CH4) and gas yield. Published experimental data from other authors has been used to train the ANNs. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published experimental data used R2 &gt; 0.98. Furthermore a sensitivity analysis has been applied in each ANN model showing that all studied input variables are important. ► We developed two ANN models for fluidized bed biomass gasification process. ► Input variables are biomass composition and a couple of operating parameters. ► Producer gas composition and yield can be determined by an ANN model. ► All input variables have a strong influence in predicting the model outputs.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.biombioe.2012.12.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0961-9534
ispartof Biomass & bioenergy, 2013-02, Vol.49, p.279-289
issn 0961-9534
1873-2909
language eng
recordid cdi_proquest_miscellaneous_1500801189
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Applied sciences
Artificial neural network
bioenergy
Biomass
carbon dioxide
Energy
Exact sciences and technology
Fluidized bed
fluidized beds
Fuel processing. Carbochemistry and petrochemistry
Fuels
Gasification
hydrogen
methane
neural networks
neurons
Simulation
Solid fuel processing (coal, coke, brown coal, peat, wood, etc.)
title Artificial neural network models for biomass gasification in fluidized bed gasifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T11%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20models%20for%20biomass%20gasification%20in%20fluidized%20bed%20gasifiers&rft.jtitle=Biomass%20&%20bioenergy&rft.au=Puig-Arnavat,%20Maria&rft.date=2013-02-01&rft.volume=49&rft.spage=279&rft.epage=289&rft.pages=279-289&rft.issn=0961-9534&rft.eissn=1873-2909&rft_id=info:doi/10.1016/j.biombioe.2012.12.012&rft_dat=%3Cproquest_cross%3E1323820122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323820122&rft_id=info:pmid/&rft_els_id=S0961953412005107&rfr_iscdi=true