Artificial neural network models for biomass gasification in fluidized bed gasifiers
Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine t...
Gespeichert in:
Veröffentlicht in: | Biomass & bioenergy 2013-02, Vol.49, p.279-289 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | |
container_start_page | 279 |
container_title | Biomass & bioenergy |
container_volume | 49 |
creator | Puig-Arnavat, Maria Hernández, J. Alfredo Bruno, Joan Carles Coronas, Alberto |
description | Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine the producer gas composition (CO, CO2, H2, CH4) and gas yield. Published experimental data from other authors has been used to train the ANNs. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published experimental data used R2 > 0.98. Furthermore a sensitivity analysis has been applied in each ANN model showing that all studied input variables are important.
► We developed two ANN models for fluidized bed biomass gasification process. ► Input variables are biomass composition and a couple of operating parameters. ► Producer gas composition and yield can be determined by an ANN model. ► All input variables have a strong influence in predicting the model outputs. |
doi_str_mv | 10.1016/j.biombioe.2012.12.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500801189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0961953412005107</els_id><sourcerecordid>1323820122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-31fb72b06df210fc45fc078160b31705dcbae6ad9ceaf2632691fc6bf2a71d7a3</originalsourceid><addsrcrecordid>eNqFkUtP3TAQha2KSr3Q_oWSTSU2uczYiZPsQKg8JKQuCmtr4gfyJTcGOxcEv74OoWyRZnQW_s7M6JixnwhrBJTHm3Xvwza3XXNAvs6V5QtbYduIknfQ7bEVdBLLrhbVN7af0gYAK6hwxW5O4-Sd156GYrS7-CbTc4j3xTYYO6TChVjMCyil4o7SDNPkw1j4sXDDzhv_ak3R515ebUzf2VdHQ7I_3vWA3Z7_vjm7LK__XFydnV6XuhJ8KgW6vuE9SOM4gtNV7TQ0LUroBTZQG92TlWQ6bclxKbjs0GnZO04NmobEATta5j7E8LizaVJbn7QdBhpt2CWFNUALiG33OSq4aOf4eEblguoYUorWqYfotxRfFIKaE1cb9T9xNVtUrizZ-Ot9ByVNg4s0ap8-3LxBiR2HzB0unKOg6C5m5vZvHpSvxbrmYiZOFiJ_gH3KkaqkvR21NT5aPSkT_GfH_APKkKPi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323820122</pqid></control><display><type>article</type><title>Artificial neural network models for biomass gasification in fluidized bed gasifiers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Puig-Arnavat, Maria ; Hernández, J. Alfredo ; Bruno, Joan Carles ; Coronas, Alberto</creator><creatorcontrib>Puig-Arnavat, Maria ; Hernández, J. Alfredo ; Bruno, Joan Carles ; Coronas, Alberto</creatorcontrib><description>Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine the producer gas composition (CO, CO2, H2, CH4) and gas yield. Published experimental data from other authors has been used to train the ANNs. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published experimental data used R2 > 0.98. Furthermore a sensitivity analysis has been applied in each ANN model showing that all studied input variables are important.
► We developed two ANN models for fluidized bed biomass gasification process. ► Input variables are biomass composition and a couple of operating parameters. ► Producer gas composition and yield can be determined by an ANN model. ► All input variables have a strong influence in predicting the model outputs.</description><identifier>ISSN: 0961-9534</identifier><identifier>EISSN: 1873-2909</identifier><identifier>DOI: 10.1016/j.biombioe.2012.12.012</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial neural network ; bioenergy ; Biomass ; carbon dioxide ; Energy ; Exact sciences and technology ; Fluidized bed ; fluidized beds ; Fuel processing. Carbochemistry and petrochemistry ; Fuels ; Gasification ; hydrogen ; methane ; neural networks ; neurons ; Simulation ; Solid fuel processing (coal, coke, brown coal, peat, wood, etc.)</subject><ispartof>Biomass & bioenergy, 2013-02, Vol.49, p.279-289</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-31fb72b06df210fc45fc078160b31705dcbae6ad9ceaf2632691fc6bf2a71d7a3</citedby><cites>FETCH-LOGICAL-c432t-31fb72b06df210fc45fc078160b31705dcbae6ad9ceaf2632691fc6bf2a71d7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biombioe.2012.12.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27161920$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Puig-Arnavat, Maria</creatorcontrib><creatorcontrib>Hernández, J. Alfredo</creatorcontrib><creatorcontrib>Bruno, Joan Carles</creatorcontrib><creatorcontrib>Coronas, Alberto</creatorcontrib><title>Artificial neural network models for biomass gasification in fluidized bed gasifiers</title><title>Biomass & bioenergy</title><description>Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine the producer gas composition (CO, CO2, H2, CH4) and gas yield. Published experimental data from other authors has been used to train the ANNs. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published experimental data used R2 > 0.98. Furthermore a sensitivity analysis has been applied in each ANN model showing that all studied input variables are important.
► We developed two ANN models for fluidized bed biomass gasification process. ► Input variables are biomass composition and a couple of operating parameters. ► Producer gas composition and yield can be determined by an ANN model. ► All input variables have a strong influence in predicting the model outputs.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial neural network</subject><subject>bioenergy</subject><subject>Biomass</subject><subject>carbon dioxide</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fluidized bed</subject><subject>fluidized beds</subject><subject>Fuel processing. Carbochemistry and petrochemistry</subject><subject>Fuels</subject><subject>Gasification</subject><subject>hydrogen</subject><subject>methane</subject><subject>neural networks</subject><subject>neurons</subject><subject>Simulation</subject><subject>Solid fuel processing (coal, coke, brown coal, peat, wood, etc.)</subject><issn>0961-9534</issn><issn>1873-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP3TAQha2KSr3Q_oWSTSU2uczYiZPsQKg8JKQuCmtr4gfyJTcGOxcEv74OoWyRZnQW_s7M6JixnwhrBJTHm3Xvwza3XXNAvs6V5QtbYduIknfQ7bEVdBLLrhbVN7af0gYAK6hwxW5O4-Sd156GYrS7-CbTc4j3xTYYO6TChVjMCyil4o7SDNPkw1j4sXDDzhv_ak3R515ebUzf2VdHQ7I_3vWA3Z7_vjm7LK__XFydnV6XuhJ8KgW6vuE9SOM4gtNV7TQ0LUroBTZQG92TlWQ6bclxKbjs0GnZO04NmobEATta5j7E8LizaVJbn7QdBhpt2CWFNUALiG33OSq4aOf4eEblguoYUorWqYfotxRfFIKaE1cb9T9xNVtUrizZ-Ot9ByVNg4s0ap8-3LxBiR2HzB0unKOg6C5m5vZvHpSvxbrmYiZOFiJ_gH3KkaqkvR21NT5aPSkT_GfH_APKkKPi</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Puig-Arnavat, Maria</creator><creator>Hernández, J. Alfredo</creator><creator>Bruno, Joan Carles</creator><creator>Coronas, Alberto</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130201</creationdate><title>Artificial neural network models for biomass gasification in fluidized bed gasifiers</title><author>Puig-Arnavat, Maria ; Hernández, J. Alfredo ; Bruno, Joan Carles ; Coronas, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-31fb72b06df210fc45fc078160b31705dcbae6ad9ceaf2632691fc6bf2a71d7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial neural network</topic><topic>bioenergy</topic><topic>Biomass</topic><topic>carbon dioxide</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fluidized bed</topic><topic>fluidized beds</topic><topic>Fuel processing. Carbochemistry and petrochemistry</topic><topic>Fuels</topic><topic>Gasification</topic><topic>hydrogen</topic><topic>methane</topic><topic>neural networks</topic><topic>neurons</topic><topic>Simulation</topic><topic>Solid fuel processing (coal, coke, brown coal, peat, wood, etc.)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puig-Arnavat, Maria</creatorcontrib><creatorcontrib>Hernández, J. Alfredo</creatorcontrib><creatorcontrib>Bruno, Joan Carles</creatorcontrib><creatorcontrib>Coronas, Alberto</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomass & bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puig-Arnavat, Maria</au><au>Hernández, J. Alfredo</au><au>Bruno, Joan Carles</au><au>Coronas, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network models for biomass gasification in fluidized bed gasifiers</atitle><jtitle>Biomass & bioenergy</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>49</volume><spage>279</spage><epage>289</epage><pages>279-289</pages><issn>0961-9534</issn><eissn>1873-2909</eissn><abstract>Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine the producer gas composition (CO, CO2, H2, CH4) and gas yield. Published experimental data from other authors has been used to train the ANNs. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published experimental data used R2 > 0.98. Furthermore a sensitivity analysis has been applied in each ANN model showing that all studied input variables are important.
► We developed two ANN models for fluidized bed biomass gasification process. ► Input variables are biomass composition and a couple of operating parameters. ► Producer gas composition and yield can be determined by an ANN model. ► All input variables have a strong influence in predicting the model outputs.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.biombioe.2012.12.012</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-9534 |
ispartof | Biomass & bioenergy, 2013-02, Vol.49, p.279-289 |
issn | 0961-9534 1873-2909 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500801189 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Applied sciences Artificial neural network bioenergy Biomass carbon dioxide Energy Exact sciences and technology Fluidized bed fluidized beds Fuel processing. Carbochemistry and petrochemistry Fuels Gasification hydrogen methane neural networks neurons Simulation Solid fuel processing (coal, coke, brown coal, peat, wood, etc.) |
title | Artificial neural network models for biomass gasification in fluidized bed gasifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T11%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20models%20for%20biomass%20gasification%20in%20fluidized%20bed%20gasifiers&rft.jtitle=Biomass%20&%20bioenergy&rft.au=Puig-Arnavat,%20Maria&rft.date=2013-02-01&rft.volume=49&rft.spage=279&rft.epage=289&rft.pages=279-289&rft.issn=0961-9534&rft.eissn=1873-2909&rft_id=info:doi/10.1016/j.biombioe.2012.12.012&rft_dat=%3Cproquest_cross%3E1323820122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323820122&rft_id=info:pmid/&rft_els_id=S0961953412005107&rfr_iscdi=true |