Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors
Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently kno...
Gespeichert in:
Veröffentlicht in: | Neuropharmacology 2013-04, Vol.67, p.432-443 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 443 |
---|---|
container_issue | |
container_start_page | 432 |
container_title | Neuropharmacology |
container_volume | 67 |
creator | Fasano, Caroline Bourque, Marie-Josée Lapointe, Gabriel Leo, Damiana Thibault, Dominic Haber, Michael Kortleven, Christian DesGroseillers, Luc Murai, Keith K. Trudeau, Louis-Éric |
description | Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits.
► A co-culture model of striatal neurons with purified dopamine neurons was developed. ► Dopamine neurons stimulate dendritic spine formation by striatal medium spiny neurons. ► The increase in dendritic spine genesis involves both D1 and D2 dopamine receptors. ► Dopamine induces a parallel increase in postsynaptic glutamate sensitivity. |
doi_str_mv | 10.1016/j.neuropharm.2012.11.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500800918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0028390812005771</els_id><sourcerecordid>1283732080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-7cf18ce1af9ecdde29caf99e3d39f0a9da9cbea91bc16b17f78759ade61e7f743</originalsourceid><addsrcrecordid>eNqFkc1u3CAURlHUqJmkfYWKZTd27zWTMSzbTPojReomXSMM1xlGtnEBV5ptnrxkJmmXWQHiXD70HcY4Qo2Am0_7eqIlhnln4lg3gE2NWIOAM7ZC2Yqqhc36DVsBNLISCuQFu0xpDwBrifItu2hEI1CCWrHHbZjN6CfivbF-8NlkStzR5KLP3vI0H-9CHE32YeLdgdtlyEskx1OO3mQz8JGcX8Yje-DHn02J510My8OOdyHv-Ba5mRzfNty95EWyNOcQ0zt23psh0fvn9Yr9-np7f_O9uvv57cfN57vKrluRq9b2KC2h6RVZ56hRtmwVCSdUD0Y5o2xHRmFncdNh27eyvVbG0QapHNbiin08vTvH8HuhlPXok6VhMBOFJWm8BpAACuXraCNFK5qCF1SeUBtDSpF6PUc_mnjQCPpJlt7r_7L0kyyNqIusMvrhOWXpSoX_Bl_sFODLCaBSyx9PUSfrabKl7tJe1i7411P-Aiq7ruY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283732080</pqid></control><display><type>article</type><title>Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fasano, Caroline ; Bourque, Marie-Josée ; Lapointe, Gabriel ; Leo, Damiana ; Thibault, Dominic ; Haber, Michael ; Kortleven, Christian ; DesGroseillers, Luc ; Murai, Keith K. ; Trudeau, Louis-Éric</creator><creatorcontrib>Fasano, Caroline ; Bourque, Marie-Josée ; Lapointe, Gabriel ; Leo, Damiana ; Thibault, Dominic ; Haber, Michael ; Kortleven, Christian ; DesGroseillers, Luc ; Murai, Keith K. ; Trudeau, Louis-Éric</creatorcontrib><description>Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits.
► A co-culture model of striatal neurons with purified dopamine neurons was developed. ► Dopamine neurons stimulate dendritic spine formation by striatal medium spiny neurons. ► The increase in dendritic spine genesis involves both D1 and D2 dopamine receptors. ► Dopamine induces a parallel increase in postsynaptic glutamate sensitivity.</description><identifier>ISSN: 0028-3908</identifier><identifier>EISSN: 1873-7064</identifier><identifier>DOI: 10.1016/j.neuropharm.2012.11.030</identifier><identifier>PMID: 23231809</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Basal ganglia ; Cells, Cultured ; Co-culture ; Coculture Techniques ; Corpus Striatum - cytology ; Corpus Striatum - physiology ; D1 dopamine receptor ; D2 dopamine receptor ; Dendritic spine ; Dendritic Spines - physiology ; Dopamine - physiology ; Dopaminergic Neurons - physiology ; Dorsal striatum ; Excitatory Postsynaptic Potentials - physiology ; Glutamate ; Mesencephalon ; Mice ; Mice, Transgenic ; Neurons - physiology ; Receptors, Dopamine D1 - physiology ; Receptors, Dopamine D2 - physiology</subject><ispartof>Neuropharmacology, 2013-04, Vol.67, p.432-443</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-7cf18ce1af9ecdde29caf99e3d39f0a9da9cbea91bc16b17f78759ade61e7f743</citedby><cites>FETCH-LOGICAL-c473t-7cf18ce1af9ecdde29caf99e3d39f0a9da9cbea91bc16b17f78759ade61e7f743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuropharm.2012.11.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23231809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fasano, Caroline</creatorcontrib><creatorcontrib>Bourque, Marie-Josée</creatorcontrib><creatorcontrib>Lapointe, Gabriel</creatorcontrib><creatorcontrib>Leo, Damiana</creatorcontrib><creatorcontrib>Thibault, Dominic</creatorcontrib><creatorcontrib>Haber, Michael</creatorcontrib><creatorcontrib>Kortleven, Christian</creatorcontrib><creatorcontrib>DesGroseillers, Luc</creatorcontrib><creatorcontrib>Murai, Keith K.</creatorcontrib><creatorcontrib>Trudeau, Louis-Éric</creatorcontrib><title>Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors</title><title>Neuropharmacology</title><addtitle>Neuropharmacology</addtitle><description>Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits.
► A co-culture model of striatal neurons with purified dopamine neurons was developed. ► Dopamine neurons stimulate dendritic spine formation by striatal medium spiny neurons. ► The increase in dendritic spine genesis involves both D1 and D2 dopamine receptors. ► Dopamine induces a parallel increase in postsynaptic glutamate sensitivity.</description><subject>Animals</subject><subject>Basal ganglia</subject><subject>Cells, Cultured</subject><subject>Co-culture</subject><subject>Coculture Techniques</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - physiology</subject><subject>D1 dopamine receptor</subject><subject>D2 dopamine receptor</subject><subject>Dendritic spine</subject><subject>Dendritic Spines - physiology</subject><subject>Dopamine - physiology</subject><subject>Dopaminergic Neurons - physiology</subject><subject>Dorsal striatum</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Glutamate</subject><subject>Mesencephalon</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neurons - physiology</subject><subject>Receptors, Dopamine D1 - physiology</subject><subject>Receptors, Dopamine D2 - physiology</subject><issn>0028-3908</issn><issn>1873-7064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u3CAURlHUqJmkfYWKZTd27zWTMSzbTPojReomXSMM1xlGtnEBV5ptnrxkJmmXWQHiXD70HcY4Qo2Am0_7eqIlhnln4lg3gE2NWIOAM7ZC2Yqqhc36DVsBNLISCuQFu0xpDwBrifItu2hEI1CCWrHHbZjN6CfivbF-8NlkStzR5KLP3vI0H-9CHE32YeLdgdtlyEskx1OO3mQz8JGcX8Yje-DHn02J510My8OOdyHv-Ba5mRzfNty95EWyNOcQ0zt23psh0fvn9Yr9-np7f_O9uvv57cfN57vKrluRq9b2KC2h6RVZ56hRtmwVCSdUD0Y5o2xHRmFncdNh27eyvVbG0QapHNbiin08vTvH8HuhlPXok6VhMBOFJWm8BpAACuXraCNFK5qCF1SeUBtDSpF6PUc_mnjQCPpJlt7r_7L0kyyNqIusMvrhOWXpSoX_Bl_sFODLCaBSyx9PUSfrabKl7tJe1i7411P-Aiq7ruY</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Fasano, Caroline</creator><creator>Bourque, Marie-Josée</creator><creator>Lapointe, Gabriel</creator><creator>Leo, Damiana</creator><creator>Thibault, Dominic</creator><creator>Haber, Michael</creator><creator>Kortleven, Christian</creator><creator>DesGroseillers, Luc</creator><creator>Murai, Keith K.</creator><creator>Trudeau, Louis-Éric</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201304</creationdate><title>Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors</title><author>Fasano, Caroline ; Bourque, Marie-Josée ; Lapointe, Gabriel ; Leo, Damiana ; Thibault, Dominic ; Haber, Michael ; Kortleven, Christian ; DesGroseillers, Luc ; Murai, Keith K. ; Trudeau, Louis-Éric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-7cf18ce1af9ecdde29caf99e3d39f0a9da9cbea91bc16b17f78759ade61e7f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Basal ganglia</topic><topic>Cells, Cultured</topic><topic>Co-culture</topic><topic>Coculture Techniques</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - physiology</topic><topic>D1 dopamine receptor</topic><topic>D2 dopamine receptor</topic><topic>Dendritic spine</topic><topic>Dendritic Spines - physiology</topic><topic>Dopamine - physiology</topic><topic>Dopaminergic Neurons - physiology</topic><topic>Dorsal striatum</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Glutamate</topic><topic>Mesencephalon</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neurons - physiology</topic><topic>Receptors, Dopamine D1 - physiology</topic><topic>Receptors, Dopamine D2 - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fasano, Caroline</creatorcontrib><creatorcontrib>Bourque, Marie-Josée</creatorcontrib><creatorcontrib>Lapointe, Gabriel</creatorcontrib><creatorcontrib>Leo, Damiana</creatorcontrib><creatorcontrib>Thibault, Dominic</creatorcontrib><creatorcontrib>Haber, Michael</creatorcontrib><creatorcontrib>Kortleven, Christian</creatorcontrib><creatorcontrib>DesGroseillers, Luc</creatorcontrib><creatorcontrib>Murai, Keith K.</creatorcontrib><creatorcontrib>Trudeau, Louis-Éric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neuropharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fasano, Caroline</au><au>Bourque, Marie-Josée</au><au>Lapointe, Gabriel</au><au>Leo, Damiana</au><au>Thibault, Dominic</au><au>Haber, Michael</au><au>Kortleven, Christian</au><au>DesGroseillers, Luc</au><au>Murai, Keith K.</au><au>Trudeau, Louis-Éric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors</atitle><jtitle>Neuropharmacology</jtitle><addtitle>Neuropharmacology</addtitle><date>2013-04</date><risdate>2013</risdate><volume>67</volume><spage>432</spage><epage>443</epage><pages>432-443</pages><issn>0028-3908</issn><eissn>1873-7064</eissn><abstract>Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits.
► A co-culture model of striatal neurons with purified dopamine neurons was developed. ► Dopamine neurons stimulate dendritic spine formation by striatal medium spiny neurons. ► The increase in dendritic spine genesis involves both D1 and D2 dopamine receptors. ► Dopamine induces a parallel increase in postsynaptic glutamate sensitivity.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23231809</pmid><doi>10.1016/j.neuropharm.2012.11.030</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3908 |
ispartof | Neuropharmacology, 2013-04, Vol.67, p.432-443 |
issn | 0028-3908 1873-7064 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500800918 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Basal ganglia Cells, Cultured Co-culture Coculture Techniques Corpus Striatum - cytology Corpus Striatum - physiology D1 dopamine receptor D2 dopamine receptor Dendritic spine Dendritic Spines - physiology Dopamine - physiology Dopaminergic Neurons - physiology Dorsal striatum Excitatory Postsynaptic Potentials - physiology Glutamate Mesencephalon Mice Mice, Transgenic Neurons - physiology Receptors, Dopamine D1 - physiology Receptors, Dopamine D2 - physiology |
title | Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopamine%20facilitates%20dendritic%20spine%20formation%20by%20cultured%20striatal%20medium%20spiny%20neurons%20through%20both%20D1%20and%20D2%20dopamine%20receptors&rft.jtitle=Neuropharmacology&rft.au=Fasano,%20Caroline&rft.date=2013-04&rft.volume=67&rft.spage=432&rft.epage=443&rft.pages=432-443&rft.issn=0028-3908&rft.eissn=1873-7064&rft_id=info:doi/10.1016/j.neuropharm.2012.11.030&rft_dat=%3Cproquest_cross%3E1283732080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283732080&rft_id=info:pmid/23231809&rft_els_id=S0028390812005771&rfr_iscdi=true |