Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors

Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropharmacology 2013-04, Vol.67, p.432-443
Hauptverfasser: Fasano, Caroline, Bourque, Marie-Josée, Lapointe, Gabriel, Leo, Damiana, Thibault, Dominic, Haber, Michael, Kortleven, Christian, DesGroseillers, Luc, Murai, Keith K., Trudeau, Louis-Éric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue
container_start_page 432
container_title Neuropharmacology
container_volume 67
creator Fasano, Caroline
Bourque, Marie-Josée
Lapointe, Gabriel
Leo, Damiana
Thibault, Dominic
Haber, Michael
Kortleven, Christian
DesGroseillers, Luc
Murai, Keith K.
Trudeau, Louis-Éric
description Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits. ► A co-culture model of striatal neurons with purified dopamine neurons was developed. ► Dopamine neurons stimulate dendritic spine formation by striatal medium spiny neurons. ► The increase in dendritic spine genesis involves both D1 and D2 dopamine receptors. ► Dopamine induces a parallel increase in postsynaptic glutamate sensitivity.
doi_str_mv 10.1016/j.neuropharm.2012.11.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500800918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0028390812005771</els_id><sourcerecordid>1283732080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-7cf18ce1af9ecdde29caf99e3d39f0a9da9cbea91bc16b17f78759ade61e7f743</originalsourceid><addsrcrecordid>eNqFkc1u3CAURlHUqJmkfYWKZTd27zWTMSzbTPojReomXSMM1xlGtnEBV5ptnrxkJmmXWQHiXD70HcY4Qo2Am0_7eqIlhnln4lg3gE2NWIOAM7ZC2Yqqhc36DVsBNLISCuQFu0xpDwBrifItu2hEI1CCWrHHbZjN6CfivbF-8NlkStzR5KLP3vI0H-9CHE32YeLdgdtlyEskx1OO3mQz8JGcX8Yje-DHn02J510My8OOdyHv-Ba5mRzfNty95EWyNOcQ0zt23psh0fvn9Yr9-np7f_O9uvv57cfN57vKrluRq9b2KC2h6RVZ56hRtmwVCSdUD0Y5o2xHRmFncdNh27eyvVbG0QapHNbiin08vTvH8HuhlPXok6VhMBOFJWm8BpAACuXraCNFK5qCF1SeUBtDSpF6PUc_mnjQCPpJlt7r_7L0kyyNqIusMvrhOWXpSoX_Bl_sFODLCaBSyx9PUSfrabKl7tJe1i7411P-Aiq7ruY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283732080</pqid></control><display><type>article</type><title>Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fasano, Caroline ; Bourque, Marie-Josée ; Lapointe, Gabriel ; Leo, Damiana ; Thibault, Dominic ; Haber, Michael ; Kortleven, Christian ; DesGroseillers, Luc ; Murai, Keith K. ; Trudeau, Louis-Éric</creator><creatorcontrib>Fasano, Caroline ; Bourque, Marie-Josée ; Lapointe, Gabriel ; Leo, Damiana ; Thibault, Dominic ; Haber, Michael ; Kortleven, Christian ; DesGroseillers, Luc ; Murai, Keith K. ; Trudeau, Louis-Éric</creatorcontrib><description>Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits. ► A co-culture model of striatal neurons with purified dopamine neurons was developed. ► Dopamine neurons stimulate dendritic spine formation by striatal medium spiny neurons. ► The increase in dendritic spine genesis involves both D1 and D2 dopamine receptors. ► Dopamine induces a parallel increase in postsynaptic glutamate sensitivity.</description><identifier>ISSN: 0028-3908</identifier><identifier>EISSN: 1873-7064</identifier><identifier>DOI: 10.1016/j.neuropharm.2012.11.030</identifier><identifier>PMID: 23231809</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Basal ganglia ; Cells, Cultured ; Co-culture ; Coculture Techniques ; Corpus Striatum - cytology ; Corpus Striatum - physiology ; D1 dopamine receptor ; D2 dopamine receptor ; Dendritic spine ; Dendritic Spines - physiology ; Dopamine - physiology ; Dopaminergic Neurons - physiology ; Dorsal striatum ; Excitatory Postsynaptic Potentials - physiology ; Glutamate ; Mesencephalon ; Mice ; Mice, Transgenic ; Neurons - physiology ; Receptors, Dopamine D1 - physiology ; Receptors, Dopamine D2 - physiology</subject><ispartof>Neuropharmacology, 2013-04, Vol.67, p.432-443</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-7cf18ce1af9ecdde29caf99e3d39f0a9da9cbea91bc16b17f78759ade61e7f743</citedby><cites>FETCH-LOGICAL-c473t-7cf18ce1af9ecdde29caf99e3d39f0a9da9cbea91bc16b17f78759ade61e7f743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuropharm.2012.11.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23231809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fasano, Caroline</creatorcontrib><creatorcontrib>Bourque, Marie-Josée</creatorcontrib><creatorcontrib>Lapointe, Gabriel</creatorcontrib><creatorcontrib>Leo, Damiana</creatorcontrib><creatorcontrib>Thibault, Dominic</creatorcontrib><creatorcontrib>Haber, Michael</creatorcontrib><creatorcontrib>Kortleven, Christian</creatorcontrib><creatorcontrib>DesGroseillers, Luc</creatorcontrib><creatorcontrib>Murai, Keith K.</creatorcontrib><creatorcontrib>Trudeau, Louis-Éric</creatorcontrib><title>Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors</title><title>Neuropharmacology</title><addtitle>Neuropharmacology</addtitle><description>Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits. ► A co-culture model of striatal neurons with purified dopamine neurons was developed. ► Dopamine neurons stimulate dendritic spine formation by striatal medium spiny neurons. ► The increase in dendritic spine genesis involves both D1 and D2 dopamine receptors. ► Dopamine induces a parallel increase in postsynaptic glutamate sensitivity.</description><subject>Animals</subject><subject>Basal ganglia</subject><subject>Cells, Cultured</subject><subject>Co-culture</subject><subject>Coculture Techniques</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - physiology</subject><subject>D1 dopamine receptor</subject><subject>D2 dopamine receptor</subject><subject>Dendritic spine</subject><subject>Dendritic Spines - physiology</subject><subject>Dopamine - physiology</subject><subject>Dopaminergic Neurons - physiology</subject><subject>Dorsal striatum</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Glutamate</subject><subject>Mesencephalon</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neurons - physiology</subject><subject>Receptors, Dopamine D1 - physiology</subject><subject>Receptors, Dopamine D2 - physiology</subject><issn>0028-3908</issn><issn>1873-7064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u3CAURlHUqJmkfYWKZTd27zWTMSzbTPojReomXSMM1xlGtnEBV5ptnrxkJmmXWQHiXD70HcY4Qo2Am0_7eqIlhnln4lg3gE2NWIOAM7ZC2Yqqhc36DVsBNLISCuQFu0xpDwBrifItu2hEI1CCWrHHbZjN6CfivbF-8NlkStzR5KLP3vI0H-9CHE32YeLdgdtlyEskx1OO3mQz8JGcX8Yje-DHn02J510My8OOdyHv-Ba5mRzfNty95EWyNOcQ0zt23psh0fvn9Yr9-np7f_O9uvv57cfN57vKrluRq9b2KC2h6RVZ56hRtmwVCSdUD0Y5o2xHRmFncdNh27eyvVbG0QapHNbiin08vTvH8HuhlPXok6VhMBOFJWm8BpAACuXraCNFK5qCF1SeUBtDSpF6PUc_mnjQCPpJlt7r_7L0kyyNqIusMvrhOWXpSoX_Bl_sFODLCaBSyx9PUSfrabKl7tJe1i7411P-Aiq7ruY</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Fasano, Caroline</creator><creator>Bourque, Marie-Josée</creator><creator>Lapointe, Gabriel</creator><creator>Leo, Damiana</creator><creator>Thibault, Dominic</creator><creator>Haber, Michael</creator><creator>Kortleven, Christian</creator><creator>DesGroseillers, Luc</creator><creator>Murai, Keith K.</creator><creator>Trudeau, Louis-Éric</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201304</creationdate><title>Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors</title><author>Fasano, Caroline ; Bourque, Marie-Josée ; Lapointe, Gabriel ; Leo, Damiana ; Thibault, Dominic ; Haber, Michael ; Kortleven, Christian ; DesGroseillers, Luc ; Murai, Keith K. ; Trudeau, Louis-Éric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-7cf18ce1af9ecdde29caf99e3d39f0a9da9cbea91bc16b17f78759ade61e7f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Basal ganglia</topic><topic>Cells, Cultured</topic><topic>Co-culture</topic><topic>Coculture Techniques</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - physiology</topic><topic>D1 dopamine receptor</topic><topic>D2 dopamine receptor</topic><topic>Dendritic spine</topic><topic>Dendritic Spines - physiology</topic><topic>Dopamine - physiology</topic><topic>Dopaminergic Neurons - physiology</topic><topic>Dorsal striatum</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Glutamate</topic><topic>Mesencephalon</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neurons - physiology</topic><topic>Receptors, Dopamine D1 - physiology</topic><topic>Receptors, Dopamine D2 - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fasano, Caroline</creatorcontrib><creatorcontrib>Bourque, Marie-Josée</creatorcontrib><creatorcontrib>Lapointe, Gabriel</creatorcontrib><creatorcontrib>Leo, Damiana</creatorcontrib><creatorcontrib>Thibault, Dominic</creatorcontrib><creatorcontrib>Haber, Michael</creatorcontrib><creatorcontrib>Kortleven, Christian</creatorcontrib><creatorcontrib>DesGroseillers, Luc</creatorcontrib><creatorcontrib>Murai, Keith K.</creatorcontrib><creatorcontrib>Trudeau, Louis-Éric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neuropharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fasano, Caroline</au><au>Bourque, Marie-Josée</au><au>Lapointe, Gabriel</au><au>Leo, Damiana</au><au>Thibault, Dominic</au><au>Haber, Michael</au><au>Kortleven, Christian</au><au>DesGroseillers, Luc</au><au>Murai, Keith K.</au><au>Trudeau, Louis-Éric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors</atitle><jtitle>Neuropharmacology</jtitle><addtitle>Neuropharmacology</addtitle><date>2013-04</date><risdate>2013</risdate><volume>67</volume><spage>432</spage><epage>443</epage><pages>432-443</pages><issn>0028-3908</issn><eissn>1873-7064</eissn><abstract>Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits. ► A co-culture model of striatal neurons with purified dopamine neurons was developed. ► Dopamine neurons stimulate dendritic spine formation by striatal medium spiny neurons. ► The increase in dendritic spine genesis involves both D1 and D2 dopamine receptors. ► Dopamine induces a parallel increase in postsynaptic glutamate sensitivity.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23231809</pmid><doi>10.1016/j.neuropharm.2012.11.030</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-3908
ispartof Neuropharmacology, 2013-04, Vol.67, p.432-443
issn 0028-3908
1873-7064
language eng
recordid cdi_proquest_miscellaneous_1500800918
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Basal ganglia
Cells, Cultured
Co-culture
Coculture Techniques
Corpus Striatum - cytology
Corpus Striatum - physiology
D1 dopamine receptor
D2 dopamine receptor
Dendritic spine
Dendritic Spines - physiology
Dopamine - physiology
Dopaminergic Neurons - physiology
Dorsal striatum
Excitatory Postsynaptic Potentials - physiology
Glutamate
Mesencephalon
Mice
Mice, Transgenic
Neurons - physiology
Receptors, Dopamine D1 - physiology
Receptors, Dopamine D2 - physiology
title Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopamine%20facilitates%20dendritic%20spine%20formation%20by%20cultured%20striatal%20medium%20spiny%20neurons%20through%20both%20D1%20and%20D2%20dopamine%20receptors&rft.jtitle=Neuropharmacology&rft.au=Fasano,%20Caroline&rft.date=2013-04&rft.volume=67&rft.spage=432&rft.epage=443&rft.pages=432-443&rft.issn=0028-3908&rft.eissn=1873-7064&rft_id=info:doi/10.1016/j.neuropharm.2012.11.030&rft_dat=%3Cproquest_cross%3E1283732080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283732080&rft_id=info:pmid/23231809&rft_els_id=S0028390812005771&rfr_iscdi=true