Translating genome wide association study results to associations among common diseases: In silico study with an electronic medical record
Highlights • An in silico model on the basis of summary GWAS and SNP LD data was built to represent a disease map. • Clinical data from a large and long running EMR was used to validate this disease map. • SNP-to-disease linkage explains only a small fraction of associations among diseases in an EMR...
Gespeichert in:
Veröffentlicht in: | International journal of medical informatics (Shannon, Ireland) Ireland), 2013-09, Vol.82 (9), p.864-874 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 874 |
---|---|
container_issue | 9 |
container_start_page | 864 |
container_title | International journal of medical informatics (Shannon, Ireland) |
container_volume | 82 |
creator | Anand, Vibha Rosenman, Marc B Downs, Stephen M |
description | Highlights • An in silico model on the basis of summary GWAS and SNP LD data was built to represent a disease map. • Clinical data from a large and long running EMR was used to validate this disease map. • SNP-to-disease linkage explains only a small fraction of associations among diseases in an EMR. • Thus far clinical data has much greater predictive power for all diseases measured. |
doi_str_mv | 10.1016/j.ijmedinf.2013.05.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500800239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S138650561300107X</els_id><sourcerecordid>1418645352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-a76e1c21fabcc22887fc77056eccb4f1c8316a4020e299e6bce7c9a52039a60d3</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIlsJfqHzksmFsJ06WAwJVfFSqxIEicbO8k0lxSOziSaj2L_CrcbRbhLj0NJbnvTea96YoziWUEqR5NZR-mKjzoS8VSF1CXQLoR8WpbBu1aVWlH-e3bs2mhtqcFM-YBwDZQF09LU6UbiqtVXVa_L5OLvDoZh9uxA2FOJG48x0JxxzR5_8YBM9LtxeJeBlnFnP8t8nCTTFzMU65is4zOSZ-LS4zz48e45F-5-fvwgVBI-GcYvAo1gXQjVkZY-qeF096NzK9ONaz4uuH99cXnzZXnz9eXry72mBVm3njGkMSlezdDlGptm16bPJehhB3VS-x1dK4ChSQ2m7J7JAa3Lpagd46A50-K14edG9T_LkQz3byjDSOLlBc2MoaoAVQevswtJKtqWpdqww1ByimyJyot7fJTy7trQS7RmYHex-ZXSOzUNscWSaeH2csu9z-S7vPKAPeHgCUTfnlKVlGTwGzVDZutl30D894858Ejj6s3v-gPfEQlxSy5VZaVhbsl_Vw1ruROt8MNN_0H6Z_wuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418645352</pqid></control><display><type>article</type><title>Translating genome wide association study results to associations among common diseases: In silico study with an electronic medical record</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Anand, Vibha ; Rosenman, Marc B ; Downs, Stephen M</creator><creatorcontrib>Anand, Vibha ; Rosenman, Marc B ; Downs, Stephen M</creatorcontrib><description>Highlights • An in silico model on the basis of summary GWAS and SNP LD data was built to represent a disease map. • Clinical data from a large and long running EMR was used to validate this disease map. • SNP-to-disease linkage explains only a small fraction of associations among diseases in an EMR. • Thus far clinical data has much greater predictive power for all diseases measured.</description><identifier>ISSN: 1386-5056</identifier><identifier>EISSN: 1872-8243</identifier><identifier>DOI: 10.1016/j.ijmedinf.2013.05.003</identifier><identifier>PMID: 23743324</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Bayesian network ; Bioinformatics ; Computational Biology ; Computer Simulation ; Data mining ; Databases, Genetic ; Disease - genetics ; Electronic Health Records - utilization ; Electronic medical records (EMRs) ; Genetic Predisposition to Disease ; Genome Wide Association Studies (GWAS) ; Genome, Human ; Genome-Wide Association Study ; Humans ; In silico ; Integration ; Internal Medicine ; Other ; Polymorphism, Single Nucleotide - genetics ; Single nucleotide polymorphisms (SNPs)</subject><ispartof>International journal of medical informatics (Shannon, Ireland), 2013-09, Vol.82 (9), p.864-874</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2013 Elsevier Ireland Ltd</rights><rights>Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-a76e1c21fabcc22887fc77056eccb4f1c8316a4020e299e6bce7c9a52039a60d3</citedby><cites>FETCH-LOGICAL-c456t-a76e1c21fabcc22887fc77056eccb4f1c8316a4020e299e6bce7c9a52039a60d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijmedinf.2013.05.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23743324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anand, Vibha</creatorcontrib><creatorcontrib>Rosenman, Marc B</creatorcontrib><creatorcontrib>Downs, Stephen M</creatorcontrib><title>Translating genome wide association study results to associations among common diseases: In silico study with an electronic medical record</title><title>International journal of medical informatics (Shannon, Ireland)</title><addtitle>Int J Med Inform</addtitle><description>Highlights • An in silico model on the basis of summary GWAS and SNP LD data was built to represent a disease map. • Clinical data from a large and long running EMR was used to validate this disease map. • SNP-to-disease linkage explains only a small fraction of associations among diseases in an EMR. • Thus far clinical data has much greater predictive power for all diseases measured.</description><subject>Algorithms</subject><subject>Bayesian network</subject><subject>Bioinformatics</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Data mining</subject><subject>Databases, Genetic</subject><subject>Disease - genetics</subject><subject>Electronic Health Records - utilization</subject><subject>Electronic medical records (EMRs)</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome Wide Association Studies (GWAS)</subject><subject>Genome, Human</subject><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>In silico</subject><subject>Integration</subject><subject>Internal Medicine</subject><subject>Other</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Single nucleotide polymorphisms (SNPs)</subject><issn>1386-5056</issn><issn>1872-8243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAQjRCIlsJfqHzksmFsJ06WAwJVfFSqxIEicbO8k0lxSOziSaj2L_CrcbRbhLj0NJbnvTea96YoziWUEqR5NZR-mKjzoS8VSF1CXQLoR8WpbBu1aVWlH-e3bs2mhtqcFM-YBwDZQF09LU6UbiqtVXVa_L5OLvDoZh9uxA2FOJG48x0JxxzR5_8YBM9LtxeJeBlnFnP8t8nCTTFzMU65is4zOSZ-LS4zz48e45F-5-fvwgVBI-GcYvAo1gXQjVkZY-qeF096NzK9ONaz4uuH99cXnzZXnz9eXry72mBVm3njGkMSlezdDlGptm16bPJehhB3VS-x1dK4ChSQ2m7J7JAa3Lpagd46A50-K14edG9T_LkQz3byjDSOLlBc2MoaoAVQevswtJKtqWpdqww1ByimyJyot7fJTy7trQS7RmYHex-ZXSOzUNscWSaeH2csu9z-S7vPKAPeHgCUTfnlKVlGTwGzVDZutl30D894858Ejj6s3v-gPfEQlxSy5VZaVhbsl_Vw1ruROt8MNN_0H6Z_wuI</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Anand, Vibha</creator><creator>Rosenman, Marc B</creator><creator>Downs, Stephen M</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130901</creationdate><title>Translating genome wide association study results to associations among common diseases: In silico study with an electronic medical record</title><author>Anand, Vibha ; Rosenman, Marc B ; Downs, Stephen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-a76e1c21fabcc22887fc77056eccb4f1c8316a4020e299e6bce7c9a52039a60d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Bayesian network</topic><topic>Bioinformatics</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Data mining</topic><topic>Databases, Genetic</topic><topic>Disease - genetics</topic><topic>Electronic Health Records - utilization</topic><topic>Electronic medical records (EMRs)</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome Wide Association Studies (GWAS)</topic><topic>Genome, Human</topic><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>In silico</topic><topic>Integration</topic><topic>Internal Medicine</topic><topic>Other</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Single nucleotide polymorphisms (SNPs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anand, Vibha</creatorcontrib><creatorcontrib>Rosenman, Marc B</creatorcontrib><creatorcontrib>Downs, Stephen M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>International journal of medical informatics (Shannon, Ireland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anand, Vibha</au><au>Rosenman, Marc B</au><au>Downs, Stephen M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translating genome wide association study results to associations among common diseases: In silico study with an electronic medical record</atitle><jtitle>International journal of medical informatics (Shannon, Ireland)</jtitle><addtitle>Int J Med Inform</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>82</volume><issue>9</issue><spage>864</spage><epage>874</epage><pages>864-874</pages><issn>1386-5056</issn><eissn>1872-8243</eissn><abstract>Highlights • An in silico model on the basis of summary GWAS and SNP LD data was built to represent a disease map. • Clinical data from a large and long running EMR was used to validate this disease map. • SNP-to-disease linkage explains only a small fraction of associations among diseases in an EMR. • Thus far clinical data has much greater predictive power for all diseases measured.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>23743324</pmid><doi>10.1016/j.ijmedinf.2013.05.003</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-5056 |
ispartof | International journal of medical informatics (Shannon, Ireland), 2013-09, Vol.82 (9), p.864-874 |
issn | 1386-5056 1872-8243 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500800239 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Bayesian network Bioinformatics Computational Biology Computer Simulation Data mining Databases, Genetic Disease - genetics Electronic Health Records - utilization Electronic medical records (EMRs) Genetic Predisposition to Disease Genome Wide Association Studies (GWAS) Genome, Human Genome-Wide Association Study Humans In silico Integration Internal Medicine Other Polymorphism, Single Nucleotide - genetics Single nucleotide polymorphisms (SNPs) |
title | Translating genome wide association study results to associations among common diseases: In silico study with an electronic medical record |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translating%20genome%20wide%20association%20study%20results%20to%20associations%20among%20common%20diseases:%20In%20silico%20study%20with%20an%20electronic%20medical%20record&rft.jtitle=International%20journal%20of%20medical%20informatics%20(Shannon,%20Ireland)&rft.au=Anand,%20Vibha&rft.date=2013-09-01&rft.volume=82&rft.issue=9&rft.spage=864&rft.epage=874&rft.pages=864-874&rft.issn=1386-5056&rft.eissn=1872-8243&rft_id=info:doi/10.1016/j.ijmedinf.2013.05.003&rft_dat=%3Cproquest_cross%3E1418645352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418645352&rft_id=info:pmid/23743324&rft_els_id=S138650561300107X&rfr_iscdi=true |