Earthquake ground-motion prediction equations for northern Iran

Earthquake ground-motion prediction equations for soil and rock sites in northern Iran have been developed based on stochastic models and Bayesian updating. Due to a lack of recorded data, the well-known simulation methodology, finite-fault model, including estimates of the inherent uncertainty of g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards (Dordrecht) 2013-12, Vol.69 (3), p.1877-1894
Hauptverfasser: Yazdani, Azad, Kowsari, Milad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1894
container_issue 3
container_start_page 1877
container_title Natural hazards (Dordrecht)
container_volume 69
creator Yazdani, Azad
Kowsari, Milad
description Earthquake ground-motion prediction equations for soil and rock sites in northern Iran have been developed based on stochastic models and Bayesian updating. Due to a lack of recorded data, the well-known simulation methodology, finite-fault model, including estimates of the inherent uncertainty of ground-motion parameters, has been used for generating more than one thousand strong motions as input data. The Bayesian approach is an effective approach that allows the combination of knowledge of seismological theory with recorded data. Estimation of the prior information is one of the most controversial issues in a Bayesian approach. In this study, generated data based on the stochastic simulation model is first used to derive the prior coefficient of earthquake ground-motion prediction equations. The prior coefficients are updated within the Bayesian approach framework by using the recorded ground motion in northern Iran. The residual plots show that the updated prediction equations agree well with available northern Iran ground-motion data. Additionally, the proposed prediction equation is validated by comparing the estimated ground motion with those of recorded data at the observed stations.
doi_str_mv 10.1007/s11069-013-0778-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500798831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1500798831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-80a6a9f9fd8cd4e4fc5bc9313a7e7c150c984894309c74987de49f3e68bfc3843</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouFZ_gLeCCF6ikyZtkpPIsurCghcFbyGbJmvXbrObtAf_vVkrIoKnmWHee8x8CJ0TuCYA_CYSApXEQCgGzgUWB2hCSp4mweAQTUAWBAOF12N0EuMagJCqkBN0O9Ohf9sN-t3mq-CHrsYb3ze-y7fB1o35am3a75uYOx_yzieHDV0-D7o7RUdOt9GefdcMvdzPnqePePH0MJ_eLbBmUPRYgK60dNLVwtTMMmfKpZGUUM0tN6QEIwUTklGQhjMpeG2ZdNRWYukMFYxm6GrM3Qa_G2zs1aaJxrat7qwfokoRwKUQKTJDF3-kaz-ELl2nCKuIYAVNYDJERpUJPsZgndqGZqPDhyKg9kjViFQlpGqPVInkufxO1tHo1qX_TRN_jIUAUha8Srpi1MW06lY2_Lrg3_BP_zuFdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461842357</pqid></control><display><type>article</type><title>Earthquake ground-motion prediction equations for northern Iran</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yazdani, Azad ; Kowsari, Milad</creator><creatorcontrib>Yazdani, Azad ; Kowsari, Milad</creatorcontrib><description>Earthquake ground-motion prediction equations for soil and rock sites in northern Iran have been developed based on stochastic models and Bayesian updating. Due to a lack of recorded data, the well-known simulation methodology, finite-fault model, including estimates of the inherent uncertainty of ground-motion parameters, has been used for generating more than one thousand strong motions as input data. The Bayesian approach is an effective approach that allows the combination of knowledge of seismological theory with recorded data. Estimation of the prior information is one of the most controversial issues in a Bayesian approach. In this study, generated data based on the stochastic simulation model is first used to derive the prior coefficient of earthquake ground-motion prediction equations. The prior coefficients are updated within the Bayesian approach framework by using the recorded ground motion in northern Iran. The residual plots show that the updated prediction equations agree well with available northern Iran ground-motion data. Additionally, the proposed prediction equation is validated by comparing the estimated ground motion with those of recorded data at the observed stations.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-013-0778-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Earthquakes ; Engineering and environment geology. Geothermics ; Environmental Management ; Exact sciences and technology ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Ground motion ; Hydrogeology ; Natural Hazards ; Natural hazards: prediction, damages, etc ; Original Paper ; Predictions ; Seismic activity ; Stochastic models ; Time &amp; motion studies</subject><ispartof>Natural hazards (Dordrecht), 2013-12, Vol.69 (3), p.1877-1894</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-80a6a9f9fd8cd4e4fc5bc9313a7e7c150c984894309c74987de49f3e68bfc3843</citedby><cites>FETCH-LOGICAL-a402t-80a6a9f9fd8cd4e4fc5bc9313a7e7c150c984894309c74987de49f3e68bfc3843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-013-0778-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-013-0778-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28015276$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazdani, Azad</creatorcontrib><creatorcontrib>Kowsari, Milad</creatorcontrib><title>Earthquake ground-motion prediction equations for northern Iran</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Earthquake ground-motion prediction equations for soil and rock sites in northern Iran have been developed based on stochastic models and Bayesian updating. Due to a lack of recorded data, the well-known simulation methodology, finite-fault model, including estimates of the inherent uncertainty of ground-motion parameters, has been used for generating more than one thousand strong motions as input data. The Bayesian approach is an effective approach that allows the combination of knowledge of seismological theory with recorded data. Estimation of the prior information is one of the most controversial issues in a Bayesian approach. In this study, generated data based on the stochastic simulation model is first used to derive the prior coefficient of earthquake ground-motion prediction equations. The prior coefficients are updated within the Bayesian approach framework by using the recorded ground motion in northern Iran. The residual plots show that the updated prediction equations agree well with available northern Iran ground-motion data. Additionally, the proposed prediction equation is validated by comparing the estimated ground motion with those of recorded data at the observed stations.</description><subject>Civil Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental Management</subject><subject>Exact sciences and technology</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hydrogeology</subject><subject>Natural Hazards</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Original Paper</subject><subject>Predictions</subject><subject>Seismic activity</subject><subject>Stochastic models</subject><subject>Time &amp; motion studies</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLxDAQhYMouFZ_gLeCCF6ikyZtkpPIsurCghcFbyGbJmvXbrObtAf_vVkrIoKnmWHee8x8CJ0TuCYA_CYSApXEQCgGzgUWB2hCSp4mweAQTUAWBAOF12N0EuMagJCqkBN0O9Ohf9sN-t3mq-CHrsYb3ze-y7fB1o35am3a75uYOx_yzieHDV0-D7o7RUdOt9GefdcMvdzPnqePePH0MJ_eLbBmUPRYgK60dNLVwtTMMmfKpZGUUM0tN6QEIwUTklGQhjMpeG2ZdNRWYukMFYxm6GrM3Qa_G2zs1aaJxrat7qwfokoRwKUQKTJDF3-kaz-ELl2nCKuIYAVNYDJERpUJPsZgndqGZqPDhyKg9kjViFQlpGqPVInkufxO1tHo1qX_TRN_jIUAUha8Srpi1MW06lY2_Lrg3_BP_zuFdA</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Yazdani, Azad</creator><creator>Kowsari, Milad</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20131201</creationdate><title>Earthquake ground-motion prediction equations for northern Iran</title><author>Yazdani, Azad ; Kowsari, Milad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-80a6a9f9fd8cd4e4fc5bc9313a7e7c150c984894309c74987de49f3e68bfc3843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Civil Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental Management</topic><topic>Exact sciences and technology</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hydrogeology</topic><topic>Natural Hazards</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Original Paper</topic><topic>Predictions</topic><topic>Seismic activity</topic><topic>Stochastic models</topic><topic>Time &amp; motion studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdani, Azad</creatorcontrib><creatorcontrib>Kowsari, Milad</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazdani, Azad</au><au>Kowsari, Milad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Earthquake ground-motion prediction equations for northern Iran</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>69</volume><issue>3</issue><spage>1877</spage><epage>1894</epage><pages>1877-1894</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>Earthquake ground-motion prediction equations for soil and rock sites in northern Iran have been developed based on stochastic models and Bayesian updating. Due to a lack of recorded data, the well-known simulation methodology, finite-fault model, including estimates of the inherent uncertainty of ground-motion parameters, has been used for generating more than one thousand strong motions as input data. The Bayesian approach is an effective approach that allows the combination of knowledge of seismological theory with recorded data. Estimation of the prior information is one of the most controversial issues in a Bayesian approach. In this study, generated data based on the stochastic simulation model is first used to derive the prior coefficient of earthquake ground-motion prediction equations. The prior coefficients are updated within the Bayesian approach framework by using the recorded ground motion in northern Iran. The residual plots show that the updated prediction equations agree well with available northern Iran ground-motion data. Additionally, the proposed prediction equation is validated by comparing the estimated ground motion with those of recorded data at the observed stations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-013-0778-8</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-030X
ispartof Natural hazards (Dordrecht), 2013-12, Vol.69 (3), p.1877-1894
issn 0921-030X
1573-0840
language eng
recordid cdi_proquest_miscellaneous_1500798831
source SpringerLink Journals - AutoHoldings
subjects Civil Engineering
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Earthquakes
Engineering and environment geology. Geothermics
Environmental Management
Exact sciences and technology
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Ground motion
Hydrogeology
Natural Hazards
Natural hazards: prediction, damages, etc
Original Paper
Predictions
Seismic activity
Stochastic models
Time & motion studies
title Earthquake ground-motion prediction equations for northern Iran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Earthquake%20ground-motion%20prediction%20equations%20for%20northern%20Iran&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Yazdani,%20Azad&rft.date=2013-12-01&rft.volume=69&rft.issue=3&rft.spage=1877&rft.epage=1894&rft.pages=1877-1894&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-013-0778-8&rft_dat=%3Cproquest_cross%3E1500798831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461842357&rft_id=info:pmid/&rfr_iscdi=true