Exponential passivity of memristive neural networks with time delays
Memristive neural networks are studied across many fields of science. To uncover their structural design principles, the paper introduces a general class of memristive neural networks with time delays. Passivity analysis is conducted by constructing suitable Lyapunov functional. The analysis in the...
Gespeichert in:
Veröffentlicht in: | Neural networks 2014-01, Vol.49, p.11-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | Neural networks |
container_volume | 49 |
creator | Wu, Ailong Zeng, Zhigang |
description | Memristive neural networks are studied across many fields of science. To uncover their structural design principles, the paper introduces a general class of memristive neural networks with time delays. Passivity analysis is conducted by constructing suitable Lyapunov functional. The analysis in the paper employs the results from the theories of nonsmooth analysis and linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and less conservatism of the proposed results. |
doi_str_mv | 10.1016/j.neunet.2013.09.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500795172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608013002359</els_id><sourcerecordid>1465860970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-1bbf6bdeabaee12f09652381a471fd23b7402b178f96430b9c92bded963252313</originalsourceid><addsrcrecordid>eNqF0LtuFDEUgGELBZFN4A0iNE2kNDMcX8aXJhJKQkCKRAO15fGcUbzMZWN7N-zb42gX6KBy4e_4WD8hFxQaClR-WDczbmfMDQPKGzANAHtFVlQrUzOl2QlZgTa8lqDhlJyltAYAqQV_Q06ZAC2Aw4rc3v3cLDPOObix2riUwi7kfbUM1YRTDCmHHVZlUSzXZdnzEn-k6jnkxyqHCaseR7dPb8nrwY0J3x3Pc_L90923m8_1w9f7LzcfH2ovWJtr2nWD7Hp0nUOkbAAjW8Y1dULRoWe8UwJYR5UejBQcOuMNK7w3krMCKT8nV4d3N3F52mLKdgrJ4zi6GZdtsrQFUKaliv2fCtlqCUZBoeJAfVxSijjYTQyTi3tLwb6ktmt7SG1fUlswtqQuY--PG7bdhP2fod9tC7g8Ape8G4foZh_SX6eBS2V0cdcHhyXdLmC0yQecPfYhos-2X8K_f_ILd2ueNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465860970</pqid></control><display><type>article</type><title>Exponential passivity of memristive neural networks with time delays</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wu, Ailong ; Zeng, Zhigang</creator><creatorcontrib>Wu, Ailong ; Zeng, Zhigang</creatorcontrib><description>Memristive neural networks are studied across many fields of science. To uncover their structural design principles, the paper introduces a general class of memristive neural networks with time delays. Passivity analysis is conducted by constructing suitable Lyapunov functional. The analysis in the paper employs the results from the theories of nonsmooth analysis and linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and less conservatism of the proposed results.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2013.09.002</identifier><identifier>PMID: 24084030</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer Simulation ; Computers, Hybrid ; Connectionism. Neural networks ; Control system analysis ; Control theory. Systems ; Exact sciences and technology ; Exponential passivity ; Hybrid systems ; Linear Models ; Memory ; Memristive neural networks ; Neural Networks (Computer) ; Nonlinear Dynamics ; Time Factors</subject><ispartof>Neural networks, 2014-01, Vol.49, p.11-18</ispartof><rights>2013</rights><rights>2015 INIST-CNRS</rights><rights>Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-1bbf6bdeabaee12f09652381a471fd23b7402b178f96430b9c92bded963252313</citedby><cites>FETCH-LOGICAL-c425t-1bbf6bdeabaee12f09652381a471fd23b7402b178f96430b9c92bded963252313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608013002359$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28036798$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24084030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Ailong</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><title>Exponential passivity of memristive neural networks with time delays</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Memristive neural networks are studied across many fields of science. To uncover their structural design principles, the paper introduces a general class of memristive neural networks with time delays. Passivity analysis is conducted by constructing suitable Lyapunov functional. The analysis in the paper employs the results from the theories of nonsmooth analysis and linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and less conservatism of the proposed results.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Computers, Hybrid</subject><subject>Connectionism. Neural networks</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Exponential passivity</subject><subject>Hybrid systems</subject><subject>Linear Models</subject><subject>Memory</subject><subject>Memristive neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>Time Factors</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LtuFDEUgGELBZFN4A0iNE2kNDMcX8aXJhJKQkCKRAO15fGcUbzMZWN7N-zb42gX6KBy4e_4WD8hFxQaClR-WDczbmfMDQPKGzANAHtFVlQrUzOl2QlZgTa8lqDhlJyltAYAqQV_Q06ZAC2Aw4rc3v3cLDPOObix2riUwi7kfbUM1YRTDCmHHVZlUSzXZdnzEn-k6jnkxyqHCaseR7dPb8nrwY0J3x3Pc_L90923m8_1w9f7LzcfH2ovWJtr2nWD7Hp0nUOkbAAjW8Y1dULRoWe8UwJYR5UejBQcOuMNK7w3krMCKT8nV4d3N3F52mLKdgrJ4zi6GZdtsrQFUKaliv2fCtlqCUZBoeJAfVxSijjYTQyTi3tLwb6ktmt7SG1fUlswtqQuY--PG7bdhP2fod9tC7g8Ape8G4foZh_SX6eBS2V0cdcHhyXdLmC0yQecPfYhos-2X8K_f_ILd2ueNQ</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Wu, Ailong</creator><creator>Zeng, Zhigang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201401</creationdate><title>Exponential passivity of memristive neural networks with time delays</title><author>Wu, Ailong ; Zeng, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-1bbf6bdeabaee12f09652381a471fd23b7402b178f96430b9c92bded963252313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Computers, Hybrid</topic><topic>Connectionism. Neural networks</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Exponential passivity</topic><topic>Hybrid systems</topic><topic>Linear Models</topic><topic>Memory</topic><topic>Memristive neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ailong</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ailong</au><au>Zeng, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential passivity of memristive neural networks with time delays</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2014-01</date><risdate>2014</risdate><volume>49</volume><spage>11</spage><epage>18</epage><pages>11-18</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Memristive neural networks are studied across many fields of science. To uncover their structural design principles, the paper introduces a general class of memristive neural networks with time delays. Passivity analysis is conducted by constructing suitable Lyapunov functional. The analysis in the paper employs the results from the theories of nonsmooth analysis and linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and less conservatism of the proposed results.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24084030</pmid><doi>10.1016/j.neunet.2013.09.002</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2014-01, Vol.49, p.11-18 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500795172 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Artificial intelligence Computer science control theory systems Computer Simulation Computers, Hybrid Connectionism. Neural networks Control system analysis Control theory. Systems Exact sciences and technology Exponential passivity Hybrid systems Linear Models Memory Memristive neural networks Neural Networks (Computer) Nonlinear Dynamics Time Factors |
title | Exponential passivity of memristive neural networks with time delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20passivity%20of%20memristive%20neural%20networks%20with%20time%20delays&rft.jtitle=Neural%20networks&rft.au=Wu,%20Ailong&rft.date=2014-01&rft.volume=49&rft.spage=11&rft.epage=18&rft.pages=11-18&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2013.09.002&rft_dat=%3Cproquest_cross%3E1465860970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465860970&rft_id=info:pmid/24084030&rft_els_id=S0893608013002359&rfr_iscdi=true |