Exponential passivity of memristive neural networks with time delays

Memristive neural networks are studied across many fields of science. To uncover their structural design principles, the paper introduces a general class of memristive neural networks with time delays. Passivity analysis is conducted by constructing suitable Lyapunov functional. The analysis in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2014-01, Vol.49, p.11-18
Hauptverfasser: Wu, Ailong, Zeng, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 11
container_title Neural networks
container_volume 49
creator Wu, Ailong
Zeng, Zhigang
description Memristive neural networks are studied across many fields of science. To uncover their structural design principles, the paper introduces a general class of memristive neural networks with time delays. Passivity analysis is conducted by constructing suitable Lyapunov functional. The analysis in the paper employs the results from the theories of nonsmooth analysis and linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and less conservatism of the proposed results.
doi_str_mv 10.1016/j.neunet.2013.09.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500795172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608013002359</els_id><sourcerecordid>1465860970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-1bbf6bdeabaee12f09652381a471fd23b7402b178f96430b9c92bded963252313</originalsourceid><addsrcrecordid>eNqF0LtuFDEUgGELBZFN4A0iNE2kNDMcX8aXJhJKQkCKRAO15fGcUbzMZWN7N-zb42gX6KBy4e_4WD8hFxQaClR-WDczbmfMDQPKGzANAHtFVlQrUzOl2QlZgTa8lqDhlJyltAYAqQV_Q06ZAC2Aw4rc3v3cLDPOObix2riUwi7kfbUM1YRTDCmHHVZlUSzXZdnzEn-k6jnkxyqHCaseR7dPb8nrwY0J3x3Pc_L90923m8_1w9f7LzcfH2ovWJtr2nWD7Hp0nUOkbAAjW8Y1dULRoWe8UwJYR5UejBQcOuMNK7w3krMCKT8nV4d3N3F52mLKdgrJ4zi6GZdtsrQFUKaliv2fCtlqCUZBoeJAfVxSijjYTQyTi3tLwb6ktmt7SG1fUlswtqQuY--PG7bdhP2fod9tC7g8Ape8G4foZh_SX6eBS2V0cdcHhyXdLmC0yQecPfYhos-2X8K_f_ILd2ueNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465860970</pqid></control><display><type>article</type><title>Exponential passivity of memristive neural networks with time delays</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wu, Ailong ; Zeng, Zhigang</creator><creatorcontrib>Wu, Ailong ; Zeng, Zhigang</creatorcontrib><description>Memristive neural networks are studied across many fields of science. To uncover their structural design principles, the paper introduces a general class of memristive neural networks with time delays. Passivity analysis is conducted by constructing suitable Lyapunov functional. The analysis in the paper employs the results from the theories of nonsmooth analysis and linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and less conservatism of the proposed results.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2013.09.002</identifier><identifier>PMID: 24084030</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer Simulation ; Computers, Hybrid ; Connectionism. Neural networks ; Control system analysis ; Control theory. Systems ; Exact sciences and technology ; Exponential passivity ; Hybrid systems ; Linear Models ; Memory ; Memristive neural networks ; Neural Networks (Computer) ; Nonlinear Dynamics ; Time Factors</subject><ispartof>Neural networks, 2014-01, Vol.49, p.11-18</ispartof><rights>2013</rights><rights>2015 INIST-CNRS</rights><rights>Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-1bbf6bdeabaee12f09652381a471fd23b7402b178f96430b9c92bded963252313</citedby><cites>FETCH-LOGICAL-c425t-1bbf6bdeabaee12f09652381a471fd23b7402b178f96430b9c92bded963252313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608013002359$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28036798$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24084030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Ailong</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><title>Exponential passivity of memristive neural networks with time delays</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Memristive neural networks are studied across many fields of science. To uncover their structural design principles, the paper introduces a general class of memristive neural networks with time delays. Passivity analysis is conducted by constructing suitable Lyapunov functional. The analysis in the paper employs the results from the theories of nonsmooth analysis and linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and less conservatism of the proposed results.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Computers, Hybrid</subject><subject>Connectionism. Neural networks</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Exponential passivity</subject><subject>Hybrid systems</subject><subject>Linear Models</subject><subject>Memory</subject><subject>Memristive neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>Time Factors</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LtuFDEUgGELBZFN4A0iNE2kNDMcX8aXJhJKQkCKRAO15fGcUbzMZWN7N-zb42gX6KBy4e_4WD8hFxQaClR-WDczbmfMDQPKGzANAHtFVlQrUzOl2QlZgTa8lqDhlJyltAYAqQV_Q06ZAC2Aw4rc3v3cLDPOObix2riUwi7kfbUM1YRTDCmHHVZlUSzXZdnzEn-k6jnkxyqHCaseR7dPb8nrwY0J3x3Pc_L90923m8_1w9f7LzcfH2ovWJtr2nWD7Hp0nUOkbAAjW8Y1dULRoWe8UwJYR5UejBQcOuMNK7w3krMCKT8nV4d3N3F52mLKdgrJ4zi6GZdtsrQFUKaliv2fCtlqCUZBoeJAfVxSijjYTQyTi3tLwb6ktmt7SG1fUlswtqQuY--PG7bdhP2fod9tC7g8Ape8G4foZh_SX6eBS2V0cdcHhyXdLmC0yQecPfYhos-2X8K_f_ILd2ueNQ</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Wu, Ailong</creator><creator>Zeng, Zhigang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201401</creationdate><title>Exponential passivity of memristive neural networks with time delays</title><author>Wu, Ailong ; Zeng, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-1bbf6bdeabaee12f09652381a471fd23b7402b178f96430b9c92bded963252313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Computers, Hybrid</topic><topic>Connectionism. Neural networks</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Exponential passivity</topic><topic>Hybrid systems</topic><topic>Linear Models</topic><topic>Memory</topic><topic>Memristive neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ailong</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ailong</au><au>Zeng, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential passivity of memristive neural networks with time delays</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2014-01</date><risdate>2014</risdate><volume>49</volume><spage>11</spage><epage>18</epage><pages>11-18</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Memristive neural networks are studied across many fields of science. To uncover their structural design principles, the paper introduces a general class of memristive neural networks with time delays. Passivity analysis is conducted by constructing suitable Lyapunov functional. The analysis in the paper employs the results from the theories of nonsmooth analysis and linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and less conservatism of the proposed results.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24084030</pmid><doi>10.1016/j.neunet.2013.09.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2014-01, Vol.49, p.11-18
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1500795172
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer Simulation
Computers, Hybrid
Connectionism. Neural networks
Control system analysis
Control theory. Systems
Exact sciences and technology
Exponential passivity
Hybrid systems
Linear Models
Memory
Memristive neural networks
Neural Networks (Computer)
Nonlinear Dynamics
Time Factors
title Exponential passivity of memristive neural networks with time delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20passivity%20of%20memristive%20neural%20networks%20with%20time%20delays&rft.jtitle=Neural%20networks&rft.au=Wu,%20Ailong&rft.date=2014-01&rft.volume=49&rft.spage=11&rft.epage=18&rft.pages=11-18&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2013.09.002&rft_dat=%3Cproquest_cross%3E1465860970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465860970&rft_id=info:pmid/24084030&rft_els_id=S0893608013002359&rfr_iscdi=true