Comparing two Bayes methods based on the free energy functions in Bernoulli mixtures

Hierarchical learning models are ubiquitously employed in information science and data engineering. The structure makes the posterior distribution complicated in the Bayes method. Then, the prediction including construction of the posterior is not tractable though advantages of the method are empiri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2013-08, Vol.44, p.36-43
Hauptverfasser: Yamazaki, Keisuke, Kaji, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue
container_start_page 36
container_title Neural networks
container_volume 44
creator Yamazaki, Keisuke
Kaji, Daisuke
description Hierarchical learning models are ubiquitously employed in information science and data engineering. The structure makes the posterior distribution complicated in the Bayes method. Then, the prediction including construction of the posterior is not tractable though advantages of the method are empirically well known. The variational Bayes method is widely used as an approximation method for application; it has the tractable posterior on the basis of the variational free energy function. The asymptotic behavior has been studied in many hierarchical models and a phase transition is observed. The exact form of the asymptotic variational Bayes energy is derived in Bernoulli mixture models and the phase diagram shows that there are three types of parameter learning. However, the approximation accuracy or interpretation of the transition point has not been clarified yet. The present paper precisely analyzes the Bayes free energy function of the Bernoulli mixtures. Comparing free energy functions in these two Bayes methods, we can determine the approximation accuracy and elucidate behavior of the parameter learning. Our results claim that the Bayes free energy has the same learning types while the transition points are different.
doi_str_mv 10.1016/j.neunet.2013.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500795114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608013000683</els_id><sourcerecordid>1364710564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-551343f15886834baf6a3be6df216951a37a8c6a04b8918da4b5f244bbdb2aaf3</originalsourceid><addsrcrecordid>eNqFkF1rFDEUhoModlv9ByK5EbyZNd-TuRHsYrVQ6E17HZLMSZtlJlmTmer--86yq94pHDg3z_uew4PQO0rWlFD1abtOMCeY1oxQvibLEPYCrahuu4a1mr1EK6I73iiiyRk6r3VLCFFa8NfojHEpNGftCt1t8rizJaYHPP3M-NLuoeIRpsfcV-xshR7nhKdHwKEAYEhQHvY4zMlPMaeKY8KXUFKehyHiMf6a5gL1DXoV7FDh7WlfoPurr3eb783N7bfrzZebxouOTo2UlAseqNRaaS6cDcpyB6oPjKpOUstbq72yRDjdUd1b4WRgQjjXO2Zt4Bfo47F3V_KPGepkxlg9DINNkOdqqCSkXYqo-D_KlWgpkeqAiiPqS661QDC7Ekdb9oYSc1Bvtuao3hzUG7IMYUvs_enC7Ebo_4R-u16ADyfAVm-HUGzysf7lWsGFZHLhPh85WNQ9RSim-gjJQx8L-Mn0Of77k2ewP6N3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1364710564</pqid></control><display><type>article</type><title>Comparing two Bayes methods based on the free energy functions in Bernoulli mixtures</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yamazaki, Keisuke ; Kaji, Daisuke</creator><creatorcontrib>Yamazaki, Keisuke ; Kaji, Daisuke</creatorcontrib><description>Hierarchical learning models are ubiquitously employed in information science and data engineering. The structure makes the posterior distribution complicated in the Bayes method. Then, the prediction including construction of the posterior is not tractable though advantages of the method are empirically well known. The variational Bayes method is widely used as an approximation method for application; it has the tractable posterior on the basis of the variational free energy function. The asymptotic behavior has been studied in many hierarchical models and a phase transition is observed. The exact form of the asymptotic variational Bayes energy is derived in Bernoulli mixture models and the phase diagram shows that there are three types of parameter learning. However, the approximation accuracy or interpretation of the transition point has not been clarified yet. The present paper precisely analyzes the Bayes free energy function of the Bernoulli mixtures. Comparing free energy functions in these two Bayes methods, we can determine the approximation accuracy and elucidate behavior of the parameter learning. Our results claim that the Bayes free energy has the same learning types while the transition points are different.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2013.03.002</identifier><identifier>PMID: 23548327</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algebra ; Algebraic geometry ; Applied sciences ; Artificial Intelligence ; Bayes Theorem ; Binomial Distribution ; Computer science; control theory; systems ; Exact sciences and technology ; Learning ; Learning and adaptive systems ; Mathematics ; Mean field approximation ; Phase transition ; Sciences and techniques of general use ; Variational Bayes method</subject><ispartof>Neural networks, 2013-08, Vol.44, p.36-43</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-551343f15886834baf6a3be6df216951a37a8c6a04b8918da4b5f244bbdb2aaf3</citedby><cites>FETCH-LOGICAL-c491t-551343f15886834baf6a3be6df216951a37a8c6a04b8918da4b5f244bbdb2aaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608013000683$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27434525$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23548327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamazaki, Keisuke</creatorcontrib><creatorcontrib>Kaji, Daisuke</creatorcontrib><title>Comparing two Bayes methods based on the free energy functions in Bernoulli mixtures</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Hierarchical learning models are ubiquitously employed in information science and data engineering. The structure makes the posterior distribution complicated in the Bayes method. Then, the prediction including construction of the posterior is not tractable though advantages of the method are empirically well known. The variational Bayes method is widely used as an approximation method for application; it has the tractable posterior on the basis of the variational free energy function. The asymptotic behavior has been studied in many hierarchical models and a phase transition is observed. The exact form of the asymptotic variational Bayes energy is derived in Bernoulli mixture models and the phase diagram shows that there are three types of parameter learning. However, the approximation accuracy or interpretation of the transition point has not been clarified yet. The present paper precisely analyzes the Bayes free energy function of the Bernoulli mixtures. Comparing free energy functions in these two Bayes methods, we can determine the approximation accuracy and elucidate behavior of the parameter learning. Our results claim that the Bayes free energy has the same learning types while the transition points are different.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bayes Theorem</subject><subject>Binomial Distribution</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Mathematics</subject><subject>Mean field approximation</subject><subject>Phase transition</subject><subject>Sciences and techniques of general use</subject><subject>Variational Bayes method</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1rFDEUhoModlv9ByK5EbyZNd-TuRHsYrVQ6E17HZLMSZtlJlmTmer--86yq94pHDg3z_uew4PQO0rWlFD1abtOMCeY1oxQvibLEPYCrahuu4a1mr1EK6I73iiiyRk6r3VLCFFa8NfojHEpNGftCt1t8rizJaYHPP3M-NLuoeIRpsfcV-xshR7nhKdHwKEAYEhQHvY4zMlPMaeKY8KXUFKehyHiMf6a5gL1DXoV7FDh7WlfoPurr3eb783N7bfrzZebxouOTo2UlAseqNRaaS6cDcpyB6oPjKpOUstbq72yRDjdUd1b4WRgQjjXO2Zt4Bfo47F3V_KPGepkxlg9DINNkOdqqCSkXYqo-D_KlWgpkeqAiiPqS661QDC7Ekdb9oYSc1Bvtuao3hzUG7IMYUvs_enC7Ebo_4R-u16ADyfAVm-HUGzysf7lWsGFZHLhPh85WNQ9RSim-gjJQx8L-Mn0Of77k2ewP6N3</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Yamazaki, Keisuke</creator><creator>Kaji, Daisuke</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20130801</creationdate><title>Comparing two Bayes methods based on the free energy functions in Bernoulli mixtures</title><author>Yamazaki, Keisuke ; Kaji, Daisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-551343f15886834baf6a3be6df216951a37a8c6a04b8918da4b5f244bbdb2aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bayes Theorem</topic><topic>Binomial Distribution</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Mathematics</topic><topic>Mean field approximation</topic><topic>Phase transition</topic><topic>Sciences and techniques of general use</topic><topic>Variational Bayes method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamazaki, Keisuke</creatorcontrib><creatorcontrib>Kaji, Daisuke</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamazaki, Keisuke</au><au>Kaji, Daisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing two Bayes methods based on the free energy functions in Bernoulli mixtures</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>44</volume><spage>36</spage><epage>43</epage><pages>36-43</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Hierarchical learning models are ubiquitously employed in information science and data engineering. The structure makes the posterior distribution complicated in the Bayes method. Then, the prediction including construction of the posterior is not tractable though advantages of the method are empirically well known. The variational Bayes method is widely used as an approximation method for application; it has the tractable posterior on the basis of the variational free energy function. The asymptotic behavior has been studied in many hierarchical models and a phase transition is observed. The exact form of the asymptotic variational Bayes energy is derived in Bernoulli mixture models and the phase diagram shows that there are three types of parameter learning. However, the approximation accuracy or interpretation of the transition point has not been clarified yet. The present paper precisely analyzes the Bayes free energy function of the Bernoulli mixtures. Comparing free energy functions in these two Bayes methods, we can determine the approximation accuracy and elucidate behavior of the parameter learning. Our results claim that the Bayes free energy has the same learning types while the transition points are different.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23548327</pmid><doi>10.1016/j.neunet.2013.03.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2013-08, Vol.44, p.36-43
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1500795114
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algebra
Algebraic geometry
Applied sciences
Artificial Intelligence
Bayes Theorem
Binomial Distribution
Computer science
control theory
systems
Exact sciences and technology
Learning
Learning and adaptive systems
Mathematics
Mean field approximation
Phase transition
Sciences and techniques of general use
Variational Bayes method
title Comparing two Bayes methods based on the free energy functions in Bernoulli mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20two%20Bayes%20methods%20based%20on%20the%20free%20energy%20functions%20in%20Bernoulli%20mixtures&rft.jtitle=Neural%20networks&rft.au=Yamazaki,%20Keisuke&rft.date=2013-08-01&rft.volume=44&rft.spage=36&rft.epage=43&rft.pages=36-43&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2013.03.002&rft_dat=%3Cproquest_cross%3E1364710564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1364710564&rft_id=info:pmid/23548327&rft_els_id=S0893608013000683&rfr_iscdi=true